J. Pawelke
Helmholtz-Zentrum Dresden-Rossendorf
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. Pawelke.
Radiotherapy and Oncology | 2004
W. Enghardt; Katia Parodi; P. Crespo; F. Fiedler; J. Pawelke; F. Pönisch
Positron emission tomography (PET) imaging of the radioactivity distributions induced by therapeutic irradiation is at present the only feasible method for an in situ and non-invasive monitoring of radiooncology treatments with ion beams. The clinical implementation of this imaging technology at the experimental carbon ion therapy facility at the Gesellschaft für Schwerionenforschung (GSI) at Darmstadt, Germany is outlined and an interactive approach for a PET guided quantification of local dose deviations with respect to the treatment plan is presented.
Review of Scientific Instruments | 2010
Alexander Buck; K. Zeil; Antonia Popp; Karl Schmid; A. Jochmann; S. D. Kraft; Bernhard Hidding; T. Kudyakov; Christopher M. S. Sears; Laszlo Veisz; Stefan Karsch; J. Pawelke; R. Sauerbrey; T. E. Cowan; Ferenc Krausz; U. Schramm
We report on new charge calibrations and linearity tests with high-dynamic range for eight different scintillating screens typically used for the detection of relativistic electrons from laser-plasma based acceleration schemes. The absolute charge calibration was done with picosecond electron bunches at the ELBE linear accelerator in Dresden. The lower detection limit in our setup for the most sensitive scintillating screen (KODAK Biomax MS) was 10 fC/mm(2). The screens showed a linear photon-to-charge dependency over several orders of magnitude. An onset of saturation effects starting around 10-100 pC/mm(2) was found for some of the screens. Additionally, a constant light source was employed as a luminosity reference to simplify the transfer of a one-time absolute calibration to different experimental setups.
Medical Physics | 2012
L. Karsch; Elke Beyreuther; T. Burris-Mog; S. D. Kraft; Christian Richter; K. Zeil; J. Pawelke
PURPOSEnThe use of laser accelerators in radiation therapy can perhaps increase the low number of proton and ion therapy facilities in some years due to the low investment costs and small size. The laser-based acceleration technology leads to a very high peak dose rate of about 10(11) Gy∕s. A first dosimetric task is the evaluation of dose rate dependence of clinical dosimeters and other detectors.nnnMETHODSnThe measurements were done at ELBE, a superconductive linear electron accelerator which generates electron pulses with 5 ps length at 20 MeV. The different dose rates are reached by adjusting the number of electrons in one beam pulse. Three clinical dosimeters (TLD, OSL, and EBT radiochromic films) were irradiated with four different dose rates and nearly the same dose. A faraday cup, an integrating current transformer, and an ionization chamber were used to control the particle flux on the dosimeters. Furthermore two diamond detectors were tested.nnnRESULTSnThe dosimeters are dose rate independent up to 4●10(9) Gy∕s within 2% (OSL and TLD) and up to 15●10(9) Gy∕s within 5% (EBT films). The diamond detectors show strong dose rate dependence.nnnCONCLUSIONSnTLD, OSL dosimeters, and EBT films are suitable for pulsed beams with a very high pulse dose rate like laser accelerated particle beams.
Medical Physics | 2013
Florian Kroll; J. Pawelke; L. Karsch
PURPOSEnClinical QA in teletherapy as well as the characterization of experimental radiation sources for future medical applications requires effective methods for measuring three-dimensional (3D) dose distributions generated in a water-equivalent medium. Current dosimeters based on ionization chambers, diodes, thermoluminescence detectors, radiochromic films, or polymer gels exhibit various drawbacks: High quality 3D dose determination is either very sophisticated and expensive or requires high amounts of effort and time for the preparation or read out. New detectors based on scintillator blocks in combination with optical tomography are studied, since they have the potential to facilitate the desired cost-effective, transportable, and long-term stable dosimetry system that is able to determine 3D dose distributions with high spatial resolution in a short time.nnnMETHODSnA portable detector prototype was set up based on a plastic scintillator block and four digital cameras. During irradiation the scintillator emits light, which is detected by the fixed cameras. The light distribution is then reconstructed by optical tomography, using maximum-likelihood expectation maximization. The result of the reconstruction approximates the 3D dose distribution. First performance tests of the prototype using laser light were carried out. Irradiation experiments were performed with ionizing radiation, i.e., bremsstrahlung (6 to 21 MV), electrons (6 to 21 MeV), and protons (68 MeV), provided by clinical and research accelerators.nnnRESULTSnLaser experiments show that the current imaging properties differ from the design specifications: The imaging scale of the optical systems is position dependent, ranging from 0.185 mm/pixel to 0.225 mm/pixel. Nevertheless, the developed dosimetry method is proven to be functional for electron and proton beams. Induced radiation doses of 50 mGy or more made 3D dose reconstructions possible. Taking the imaging properties into account, determined dose profiles are in agreement with reference measurements. An inherent drawback of the scintillator is the nonlinear light output for high stopping-power radiation due to the quenching effect. It impacts the depth dose curves measured with the dosimeter. For single Bragg peak distributions this leads to a peak to plateau ratio of 2.8 instead of 4.5 for the reference ionization chamber measurement. Furthermore, the transmission of the clinical bremsstrahlung beams through the scintillator leads to the saturation of one camera, making dose reconstructions in that case presently not feasible.nnnCONCLUSIONSnIt is shown that distributions of scintillation light generated by proton or electron beams can be reconstructed by the dosimetry system within minutes. The quenching apparent for proton irradiation, and the yet not precisely determined position dependency of the imaging scale, require further investigation and corrections. Upgrading the prototype with larger or inorganic scintillators would increase the detectable proton and electron energy range. The presented results show that the determination of 3D dose distributions using scintillator blocks and optical tomography is a promising dosimetry method.
Review of Scientific Instruments | 2012
Josefine Metzkes; Leonhard Karsch; S. D. Kraft; J. Pawelke; Christian Richter; M. Schürer; M. Sobiella; N. Stiller; K. Zeil; U. Schramm
In recent years, a new generation of high repetition rate (~10 Hz), high power (~100 TW) laser systems has stimulated intense research on laser-driven sources for fast protons. Considering experimental instrumentation, this development requires online diagnostics for protons to be added to the established offline detection tools such as solid state track detectors or radiochromic films. In this article, we present the design and characterization of a scintillator-based online detector that gives access to the angularly resolved proton distribution along one spatial dimension and resolves 10 different proton energy ranges. Conceived as an online detector for key parameters in laser-proton acceleration, such as the maximum proton energy and the angular distribution, the detector features a spatial resolution of ~1.3 mm and a spectral resolution better than 1.5 MeV for a maximum proton energy above 12 MeV in the current design. Regarding its areas of application, we consider the detector a useful complement to radiochromic films and Thomson parabola spectrometers, capable to give immediate feedback on the experimental performance. The detector was characterized at an electrostatic Van de Graaff tandetron accelerator and tested in a laser-proton acceleration experiment, proving its suitability as a diagnostic device for laser-accelerated protons.
International Journal of Radiation Biology | 2015
Elke Beyreuther; L. Karsch; Lydia Laschinsky; Elisabeth Leßmann; Doreen Naumburger; Melanie Oppelt; Christian Richter; M. Schürer; Julia Woithe; J. Pawelke
Abstract Purpose: In line with the long-term aim of establishing the laser-based particle acceleration for future medical application, the radiobiological consequences of the typical ultra-short pulses and ultra-high pulse dose rate can be investigated with electron delivery. Materials and methods: The radiation source ELBE (Electron Linac for beams with high Brilliance and low Emittance) was used to mimic the quasi-continuous electron beam of a clinical linear accelerator (LINAC) for comparison with electron pulses at the ultra-high pulse dose rate of 1010 Gy min−1 either at the low frequency of a laser accelerator or at 13 MHz avoiding effects of prolonged dose delivery. The impact of pulse structure was analyzed by clonogenic survival assay and by the number of residual DNA double-strand breaks remaining 24 h after irradiation of two human squamous cell carcinoma lines of differing radiosensitivity. Results: The radiation response of both cell lines was found to be independent from electron pulse structure for the two endpoints under investigation. Conclusions: The results reveal, that ultra-high pulse dose rates of 1010 Gy min−1 and the low repetition rate of laser accelerated electrons have no statistically significant influence (within the 95% confidence intervals) on the radiobiological effectiveness of megavoltage electrons.
Biomedizinische Technik | 2012
M. Schürer; Michael Baumann; E. Beyreuther; K. Brüchner; W. Enghardt; M. Kaluza; L. Karsch; L. Laschinsky; E. Leßmann; M. Nicolai; M. Oppelt; M. Reuter; Christian Richter; A. Sävert; M. Schnell; J. Woithe; J. Pawelke
In recent years, the new technology of laser based particle acceleration was developed at such a rate that medical application for cancer therapy could become feasible. Promising more compact and economic proton and ion accelerators the laser technology however results in specific properties, like ultra-short (~ps) and ultra-intensive particle beam pulses. The clinical applicability of such new beam qualities requires comprehensive translational research from basic investigations to cell and animal experiments, finally followed by clinical trials. For the first time, the new laser based irradiation technology was established for animal experiments by the German joint research project “onCOOPtics”. A complete irradiation facility for laser accelerated electrons was developed, set up, commissioned, tested and applied for radiobiological tumour irradiation experiments under usage of a mouse model at the high intensity laser system JETI. The integration of a magnet and a collimator system resulted in an optimized beam transport and efficient electron energy filtration. Moreover, a specific irradiation and dosimetry setup was integrated allowing for the formation of irradiation fields, the real-time control of beam parameters and dose delivery to the tumour. For an accurate and reproducible positioning of the tumour in the irradiation field the mice were fixed in a movable box and the tumour position was online verified by means of a CCD camera system. The combination of both, the advanced laser accelerator system and the newly implemented irradiation and dosimetry setup allowed the successful performance of systematic radiobiological studies over months. Moreover, the practicability and easy handling of the system results in a reasonable duration of about 15 min for the whole procedure of mouse preparation, positioning and irradiation. In conclusion, the successful establishment of all technical requirements for and the performance of systematic animal studies with laser accelerated electrons mark an important step towards the clinical application of laser accelerated particle beams.
ADVANCED ACCELERATOR CONCEPTS: 14th Advanced Accelerator Concepts Workshop | 2010
T. E. Cowan; U. Schramm; T. Burris-Mog; F. Fiedler; S. D. Kraft; K. Zeil; Michael Baumann; M. Bussmann; W. Enghardt; K. A. Flippo; S. A. Gaillard; K. Harres; T. Herrmannsdoerfer; T. Kluge; F. Nürnberg; J. Pawelke; Markus Roth; B. Schmidt; M. Sobiella; R. Sauerbrey
Recent advances in laser‐ion acceleration have motivated research towards laser‐driven compact accelerators for medical therapy. Realizing laser‐ion acceleration for medical therapy will require adapting the medical requirements to the foreseeable laser constraints, as well as advances in laser‐acceleration physics, beam manipulation and delivery, real‐time dosimetry, treatment planning and translational research into a clinical setting.
Acta Oncologica | 2017
Leonhard Karsch; Elke Beyreuther; W. Enghardt; Malte Gotz; Umar Masood; U. Schramm; K. Zeil; J. Pawelke
Abstract Only few ten radiotherapy facilities worldwide provide ion beams, in spite of their physical advantage of better achievable tumor conformity of the dose compared to conventional photon beams. Since, mainly the large size and high costs hinder their wider spread, great efforts are ongoing to develop more compact ion therapy facilities. One promising approach for smaller facilities is the acceleration of ions on micrometre scale by high intensity lasers. Laser accelerators deliver pulsed beams with a low pulse repetition rate, but a high number of ions per pulse, broad energy spectra and high divergences. A clinical use of a laser based ion beam facility requires not only a laser accelerator providing beams of therapeutic quality, but also new approaches for beam transport, dosimetric control and tumor conformal dose delivery procedure together with the knowledge of the radiobiological effectiveness of laser-driven beams. Over the last decade research was mainly focused on protons and progress was achieved in all important challenges. Although currently the maximum proton energy is not yet high enough for patient irradiation, suggestions and solutions have been reported for compact beam transport and dose delivery procedures, respectively, as well as for precise dosimetric control. Radiobiological in vitro and in vivo studies show no indications of an altered biological effectiveness of laser-driven beams. Laser based facilities will hardly improve the availability of ion beams for patient treatment in the next decade. Nevertheless, there are possibilities for a need of laser based therapy facilities in future.
Radiotherapy and Oncology | 2018
Manjit Dosanjh; Bleddyn Jones; J. Pawelke; Martin Pruschy; Brita Singers Sørensen
Particle therapy (PT) as cancer treatment, using protons or heavier ions, can provide a more favorable dose distribution compared to X-rays. While the physical characteristics of particle radiation have been the aim of intense research, less focus has been placed on the actual biological responses arising from particle irradiation. One of the biggest challenges for proton radiobiology is the RBE, with an increasing concern that the clinically-applied generic RBE-value of 1.1 is an approximation, as RBE is a complex quantity, depending on both biological and physical parameters, such as dose, LET, cellular and tissue radiobiological characteristics, as well as the endpoints being studied. Most of the available RBE data derive from in vitro experiments, with very limited in vivo data available, especially in late-reacting tissues, which provide the main constraints and influence the quality of life endpoints in radiotherapy. There is a need for systematic, large-scale studies to thoroughly establish the biology of particle radiation in a number of different experimental models in order to refine biophysical mathematical models that can potentially be used to guide PT. The overall objective of the European Particle Therapy Network (EPTN) WP6 is to form a network of research and therapy facilities in order to coordinate and standardize the radiobiological experiments, to obtain more accurate predictive parameters than in the past. Coordinated research is required in order to obtain the most appropriate experimental data. The aim in this paper is to describe the available radiobiology infrastructure of the centers involved in EPTN WP6.