J. Peiró
Imperial College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. Peiró.
Journal of Fluid Mechanics | 2009
J. I. Whelan; J. M. R. Graham; J. Peiró
The effects of free-surface proximity on the flow field around tidal stream turbines are modelled using actuator disc theory. Theoretical results are presented for a blocked configuration of tidal stream turbines such as a linear array that account for the proximity of the free surface and the seabed. The theoretical results are compared to open channel flow experimental results in which the flow field has been simulated using a porous disc and strip. These results are complemented by more detailed measurements of the performance of a model horizontal-axis turbine carried out in a water flume and a wind tunnel. The two sets of experiments represent highly blocked and effectively unblocked cases, respectively. The theoretical model of the effects of free-surface proximity provides a blockage correction for axial induction that can be incorporated in blade element momentum codes. The performance predictions obtained with such a code are in good agreement with the experimental results for C P and C T at low tip-speed ratios. The agreement weakens with increasing tip-speed ratio, as the wake of turbine enters a reversed flow state. A correction following the philosophy of Maskell is applied to C T in this region, which provides a better agreement.
Journal of Biomechanical Engineering-transactions of The Asme | 2005
Sergio Giordana; Spencer J. Sherwin; J. Peiró; Denis J. Doorly; Jeremy S. Crane; K. E. Lee; Nicholas Cheshire; C. G. Caro
We consider the effect of geometrical configuration on the steady flow field of representative geometries from an in vivo anatomical data set of end-to-side distal anastomoses constructed as part of a peripheral bypass graft. Using a geometrical classification technique, we select the anastomoses of three representative patients according to the angle between the graft and proximal host vessels (GPA) and the planarity of the anastomotic configuration. The geometries considered include two surgically tunneled grafts with shallow GPAs which are relatively planar but have different lumen characteristics, one case exhibiting a local restriction at the perianastomotic graft and proximal host whilst the other case has a relatively uniform cross section. The third case is nonplanar and characterized by a wide GPA resulting from the graft being constructed superficially from an in situ vein. In all three models the same peripheral resistance was imposed at the computational outflows of the distal and proximal host vessels and this condition, combined with the effect of the anastomotic geometry, has been observed to reasonably reproduce the in vivo flow split. By analyzing the flow fields we demonstrate how the local and global geometric characteristics influences the distribution of wall shear stress and the steady transport of fluid particles. Specifically, in vessels that have a global geometric characteristic we observe that the wall shear stress depends on large scale geometrical factors, e.g., the curvature and planarity of blood vessels. In contrast, the wall shear stress distribution and local mixing is significantly influenced by morphology and location of restrictions, particular when there is a shallow GPA. A combination of local and global effects are also possible as demonstrated in our third study of an anastomosis with a larger GPA. These relatively simple observations highlight the need to distinguish between local and global geometric influences for a given reconstruction. We further present the geometrical evolution of the anastomoses over a series of follow-up studies and observe how the lumen progresses towards the faster bulk flow of the velocity in the original geometry. This mechanism is consistent with the luminal changes in recirculation regions that experience low wall shear stress. In the shallow GPA anastomoses the proximal part of the native host vessel occludes or stenoses earlier than in the case with wide GPA. A potential contribution to this behavior is suggested by the stronger mixing that characterizes anastomoses with large GPA.
Archive | 2005
J. Peiró; Spencer J. Sherwin
There are three important steps in the computational modelling of any physical process: (i) problem definition, (ii) mathematical model, and (iii) computer simulation.
Journal of Biomechanics | 2009
Jordi Alastruey; Simon R. Nagel; Bettina Nier; Anthony A. E. Hunt; Peter D. Weinberg; J. Peiró
Pulse wave propagation in the mature rabbit systemic circulation was simulated using the one-dimensional equations of blood flow in compliant vessels. A corrosion cast of the rabbit circulation was manufactured to obtain arterial lengths and diameters. Pulse wave speeds and inflow and outflow boundary conditions were derived from in vivo data. Numerical results captured the main features of in vivo pressure and velocity pulse waveforms in the aorta, brachiocephalic artery and central ear artery. This model was used to elucidate haemodynamic mechanisms underlying changes in peripheral pulse waveforms observed in vivo after administering drugs that alter nitric oxide synthesis in the endothelial cells lining blood vessels. According to our model, these changes can be explained by single or combined alterations of blood viscosity, peripheral resistance and compliance, and the elasticity of conduit arteries.
Computer Methods in Biomechanics and Biomedical Engineering | 2006
Jordi Alastruey; Kim H. Parker; J. Peiró; Spencer J. Sherwin
Blood flow in the largest arteries of the arm up to the digital arteries is numerically modelled using the one-dimensional equations of pressure and flow wave propagation in compliant vessels. The model can be applied to different anatomies of arterial networks and can simulate compression of arteries, these allowing us to simulate the modified Allens test (MAT) and to assess its suitability for the detection of sufficient collateral flow in the hand if radial blood supply is interrupted. The test measures blood flow in the superficial palmar arch before and during compression of the radial artery. The absence of reversal flow in the palmar arch with the compression indicates insufficient collateral flow and is referred to as a positive MAT. This study shows that small calibres of the superficial palmar arch and insufficient compression of the radial artery can lead to false-positive results. Measurement of the drop in digital systolic pressures with compression of the radial artery has proved to be a more sensitive test to predict the presence of sufficient ulnar collateral flow in networks with small calibres of the superficial palmar arch. However, this study also shows that digital pressure measurements can fail in detecting enough collateral flow if the radial artery is insufficiently compressed.
Journal of Vascular Surgery | 2003
Mark J. Jackson; Colin Bicknell; Vasielios Zervas; Nick Cheshire; Spencer J. Sherwin; Sergio Giordana; J. Peiró; Yannis Papaharilaou; Dennis J Doorly; C. G. Caro
High-resolution magnetic resonance imaging was combined with computational modeling to create focused three-dimensional reconstructions of the distal anastomotic region of autologous vein peripheral bypass grafts in a preliminary series of patients. Readily viewed on a personal computer or printed as hard copies, a detailed appreciation of in vivo postoperative features of the anastomosis is possible. These reconstructions are suitable for analysis of geometric features, including vessel caliber, tortuosity, anastomotic angles, and planarity. Some potential clinical and research applications of this technique are discussed.
Medical & Biological Engineering & Computing | 2008
J. Peiró; Spencer J. Sherwin; Sergio Giordana
We describe a set of procedures for the shape reconstruction and mesh generation of unstructured high-order spatial discretization of patient-specific geometries from a series of medical images and for the simulation of flows in these meshes using a high-order hp-spectral solver. The reconstruction of the shape of the boundary is based on the interpolation of an implicit function through a set of points obtained from the segmentation of the images. This approach is favoured for its ability of smoothly interpolating between sections of different topology. The boundary of the object is initially represented as an iso-surface of an implicit function defined in terms of radial basis functions. This surface is approximated by a triangulation extracted by the method of marching cubes. The triangulation is then suitably smoothed and refined to improve its quality and permit its approximation by a quilt of bi-variate spline surface patches. Such representation is often the standard input format required for state-of-the-art mesh generators. The generation of the surface patches is based on a partition of the triangulation into Voronoi regions and dual Delaunay triangulations with an even number of triangles. The quality of the triangulation is optimized by imposing that the distortion associated with the energy of deformation by harmonic maps is minimized. Patches are obtained by merging adjacent triangles and this representation is then used to generate a mesh of linear elements using standard generation techniques. Finally, a mesh of high-order elements is generated in a bottom-up fashion by creating the additional points required for the high-order interpolation and projecting them on the edges and surfaces of the quilt of patches. The methodology is illustrated by generating meshes for a by-pass graft geometry and calculating high-order CFD solutions in these meshes.
Aeronautical Journal | 2007
Ugo Galvanetto; J. Peiró; C. Chantharasenawong
We use standard tools of the theory of dynamical systems such as phase plots, bifurcation diagrams and basins of attraction to analyse and understand the dynamic behaviour of a typical aerofoil section under dynamic stall conditions. The structural model is linear and the aerodynamic loading is represented by the Leishman-Beddoes semi-empirical dynamic stall model. The loads given by this model are non-linear and non-smooth, therefore we have integrated the equation of motion using a Runge-Kutta-Fehlberg (RKF45) algorithm equipped with event detection. We perform simulations of the motion for a range of Mach numbers and show that the model is very sensitive to small variations. This is evidenced by the presence in the bifurcation diagram of co-existing attractors or, in other words, by the existence of more than one steady-state motion for a given Mach number. The mechanisms for the appearance and disappearance of the co-existing attractors are elucidated by analysing the evolution of their basins of attraction as the Mach number changes.
Journal of Engineering Mathematics | 2003
Spencer J. Sherwin; V. Franke; J. Peiró; Kim H. Parker
Journal of Biomechanics | 2007
Jordi Alastruey; Kim H. Parker; J. Peiró; Sheila Byrd; Spencer J. Sherwin