J. Pelt
Tartu Observatory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. Pelt.
The Astrophysical Journal | 2002
J. Hjorth; I. Burud; A. O. Jaunsen; Paul L. Schechter; Jean-Paul Kneib; Michael I. Andersen; H. Korhonen; Jacob W. Clasen; A. Amanda Kaas; Roy Ostensen; J. Pelt; Frank P. Pijpers
We present optical light curves of the gravitationally lensed components A (≡A1+A2+A3) and B of the quadruple quasar RX J0911.4+0551 (z = 2.80). The observations were primarily obtained at the Nordic Optical Telescope between 1997 March and 2001 April and consist of 74 I-band data points for each component. The data allow the measurement of a time delay of 146 ± 8 days (2 σ) between A and B, with B as the leading component. This value is significantly shorter than that predicted from simple models and indicates a very large external shear. Mass models including the main lens galaxy and the surrounding massive cluster of galaxies at z = 0.77, responsible for the external shear, yield H0 = 71 ± 4 (random, 2 σ) ± 8 (systematic) km s-1 Mpc-1. The systematic model uncertainty is governed by the surface-mass density (convergence) at the location of the multiple images.
Astronomy and Astrophysics | 2015
Bidya Binay Karak; Petri J. Käpylä; Maarit J. Käpylä; Axel Brandenburg; N. Olspert; J. Pelt
Late-type stars rotate differentially owing to anisotropic turbulence in their outer convection zones. The rotation is called solar-like (SL) when the equator rotates fastest and anti-solar (AS) otherwise. Hydrodynamic simulations show a transition from SL to AS rotation as the influence of rotation on convection is reduced, but the opposite transition occurs at a different point in the parameter space. The system is bistable, i.e., SL and AS rotation profiles can both be stable. We study the effect of a dynamo-generated magnetic field on the large-scale flows, particularly on the possibility of bistable behavior of differential rotation. We solve the hydromagnetic equations numerically in a rotating spherical shell for a set of different radiative conductivities controlling the relative importance of convection. In agreement with earlier findings, our models display SL rotation profiles when the rotational influence on convection is strong and a transition to AS when the rotational influence decreases. We find that dynamo-generated magnetic fields help to produce SL differential rotation compared to the hydrodynamic simulations. We do not observe any bistable states of differential rotation. In the AS cases we get coherent single-cell meridional circulation, whereas in SL cases we get multi-cellular patterns. In both cases, we obtain poleward circulation near the surface with a magnitude close to that observed in the Sun. Moreover, both differential rotation and meridional circulation have significant magnetic cycle-related variations that are similar in strength to those of the Sun. Purely hydrodynamic simulations of differential rotation and meridional circulation are shown to be of limited relevance as magnetic fields, self-consistently generated by dynamo action, significantly affect the flows.
Astronomy and Astrophysics | 2016
Maarit J. Käpylä; Petri J. Käpylä; N. Olspert; Axel Brandenburg; Jörn Warnecke; Bidya Binay Karak; J. Pelt
Context. Solar magnetic activity shows both smooth secular changes, such as the modern Grand Maximum, and quite abrupt drops that are denoted as grand minima, such as the Maunder Minimum. Direct nu ...
Astronomy and Astrophysics | 2013
T. Hackman; J. Pelt; Maarit J. Mantere; L. Jetsu; H. Korhonen; Thomas Granzer; P. Kajatkari; Jyri Lehtinen; Klaus G. Strassmeier
Context. FK Comae Berenices is a rapidly rotating magnetically active star, the light curve of which is modulated by cool spots on its surface. It was the first star where the “flip-flop” phenomenon was discovered. Since then, flip-flops in the spot activity have been reported in many other stars. Follow-up studies with increasing length have shown, however, that the phenomenon is more complex than was thought right after its discovery. Aims. Therefore, it is of interest to perform a more thorough study of the evolution of the spot activity in FK Com. In this study, we analyse 15 years of photometric observations with two different time series analysis methods, with a special emphasis on detecting flip-flop type events from the data. Methods. We apply the continuous period search and carrier fit methods on long-term standard Johnson-Cousins V-observations from the years 1995−2010. The observations were carried out with two automated photometric telescopes, Phoenix-10 and Amadeus T7 located in Arizona. Results. We identify complex phase behaviour in 6 of the 15 analysed data segments. We identify five flip-flop events and two cases of phase jumps, where the phase shift is Δ φ 0.031. Conclusions. The flip-flop cannot be interpreted as a single phenomenon, where the main activity jumps from one active longitude to another. In some of our cases the phase shifts can be explained by differential rotation: two spot regions move with different angular velocity and even pass each other. Comparison between the methods show that the carrier fit utility is better in retrieving slow evolution especially from a low amplitude light curve, while the continuous period search is more sensitive in case of rapid changes.
The Astrophysical Journal | 2015
E. K. J. Kilpua; N. Olspert; A. Grigorievskiy; M. J. Kapyla; E. I. Tanskanen; Hiroko Miyahara; Ryuho Kataoka; J. Pelt; Ying D. Liu
We study the relation between strong and extreme geomagnetic storms and solar cycle characteristics. The analysis uses an extensive geomagnetic index AA data set spanning over 150 yr complemented by the Kakioka magnetometer recordings. We apply Pearson correlation statistics and estimate the significance of the correlation with a bootstrapping technique. We show that the correlation between the storm occurrence and the strength of the solar cycle decreases from a clear positive correlation with increasing storm magnitude toward a negligible relationship. Hence, the quieter Sun can also launch superstorms that may lead to significant societal and economic impact. Our results show that while weaker storms occur most frequently in the declining phase, the stronger storms have the tendency to occur near solar maximum. Our analysis suggests that the most extreme solar eruptions do not have a direct connection between the solar large-scale dynamo-generated magnetic field, but are rather associated with smaller-scale dynamo and resulting turbulent magnetic fields. The phase distributions of sunspots and storms becoming increasingly in phase with increasing storm strength, on the other hand, may indicate that the extreme storms are related to the toroidal component of the solar large-scale field.
Astronomy and Astrophysics | 2006
J. Pelt; John Brooke; M. J. Korpi
Context. It has recently been claimed that analysis of Greenwich sunspot data over 120 years reveals that sunspot activity clusters around two longitudes separated by 180 ◦ (“active longitudes”) with clearly defined differential rotation during activity cycles. In previous work we demonstrated that such effects can be observed in synthetic data without such features, as an artefact of the method of analysis. Aims. In the present work we extend this critical examination of methodology to the actual Greenwich sunspot data and also consider newly proposed methods of analysis claiming to confirm the original identification of active longitudes. Methods. We performed fits of different kinematic frames onto the actual sunspot data. Firstly, a cell-counting statistic was used to analyse a comoving system of frames and show that such frames extract useful information from the data. Secondly, to check the claim of century-scale persistent active longitudes in a contramoving frame system, we made a comprehensive exploration of parameter space following the original methodology as closely as possible. Results. Our analysis revealed that values obtained for the parameters of differential rotation are not stable across different methods of analysis proposed to track persistent active longitudes. Also, despite a very thorough search in parameter space, we were unable to reproduce results claiming to reveal the century-persistent active longitudes. Previous parameter space exploration has been restricted to frames whose latitudinal profile is opposite to solar surface differential rotation. Relaxing this restriction we found that the highest values of nonaxisymmetry occur for frames comoving with the solar surface flow. Further analysis indicates that even these solutions are the result of purely statistical fluctuations. Conclusions. We can therefore say that strong and well substantiated evidence for an essential and century-scale persistent nonaxisymmetry in the sunspot distribution does not exist.
Astronomy and Astrophysics | 2014
Elmo Tempel; R. Kipper; Enn Saar; M. Bussov; A. Hektor; J. Pelt
Context. Galaxies in the Universe form chains (filaments) that connect groups and clusters of galaxies. The filamentary network includes nearly half of the galaxies and is visually the most striking feature in cosmological maps. Aims. We study the distribution of galaxies along the filamentary network, trying to find specific patterns and regularities. Methods. Galaxy filaments are defined by the Bisous model, a marked point process with interactions. We use the two-point correlation function and the Rayleigh Z-squared statistic to study how galaxies and galaxy groups are distributed along the filaments. Results. We show that galaxies and groups are not uniformly distributed along filaments, but tend to form a regular pattern. The characteristic length of the pattern is around 7 Mpc/h. A slightly smaller characteristic length 4 Mpc/h can also be found, using the Z-squared statistic. Conclusions. We find that galaxy filaments in the Universe are like pearl necklaces, where the pearls are galaxy groups distributed more or less regularly along the filaments. We propose that this well defined characteristic scale could be used to test various cosmological models and to probe environmental effects on the formation and evolution of galaxies.
Astronomy and Astrophysics | 2013
Marjaana Lindborg; Maarit J. Mantere; N. Olspert; J. Pelt; T. Hackman; Gregory W. Henry; L. Jetsu; Klaus G. Strassmeier
Aims. According to previously published Doppler images of the magnetically active primary giant component of the RS CVn binary II Peg, the surface of the star was dominated by one single active longitude that was clearly drifting in the rotational frame of the binary system during 1994-2002; later imaging for 2004–2010, however, showed decreased and chaotic spot activity, with no signs of the drift pattern. Here we set out to investigate from a more extensive photometric dataset whether this drift is a persistent phenomenon, in which case it could be caused either by an azimuthal dynamo wave or be an indication that the binary system’s orbital synchronization is still incomplete. On a differentially rotating stellar surface, spot structures preferentially on a certain latitude band could also cause such a drift, the disruption of which could arise from the change of the preferred spot latitude. Methods. We analyzed the datasets using the carrier fit (CF) method, which is especially suitable for analyzing time series in which a fast clocking frequency (such as the rotation of the star) is modulated with a slower process (such as the stellar activity cycle). Results. We combined all collected photometric data into one single data set and analyzed it with the CF method. We confirm the previously published results that the spot activity has been dominated by one primary spotted region almost through the entire data set and also confirm a persistent, nearly linear drift. Disruptions of the linear trend and complicated phase behavior are also seen, but the period analysis reveals a rather stable periodicity with Pspot = 6. d 71054 ± 0. 00005. After removing the linear trend from the data, we identified several abrupt phase jumps, three of which are analyzed in more detail with the CF method. These phase jumps closely resemble what is called a flip-flop event, but the new spot configurations do not persist for longer than a few months in most cases. Conclusions. There is some evidence that the regular drift without phase jumps is related to the high state, while the complex phase behavior and disrupted drift pattern are related to the low state of magnetic activity. The most natural explanation of the drift is weak anti-solar (pole rotating faster than the equator) differential rotation with a coefficient k ≈ 0.002 combined with the preferred latitude of the spot structure.
Astronomy and Astrophysics | 2010
J. Pelt; M. J. Korpi
Context. The sunspots and other solar activity indicators tend to cluster on the surface of the Sun. These clusters very often occur at certain longitudes that persist in time. It is of general interest to find new and simple ways to characterize the observed distributions of different indicators and their behaviour in time. Aims. In the present work we use Greenwich sunspot data to evaluate the statistical but not totally coherent stability of the sunspot distribution along latitudes as well as longitudes. The aim was to obtain information on the longitudinal distribution of the underlying spot-generating mechanism rather than on the distribution and migration of sunspots or sunspot groups on the solar surface. Therefore only sunspot groups were included in the analysis, and only the time of their first appearance was used. Methods. We used a simple nonparametric approach to reveal sunspot migration patterns and their persistency. Results. Our analysis shows that regions where spots are generated tend to rotate differentially as the spots and spot groups themselves do. The spatial correlations in activity, however, tend to break down relatively fast, during 7–15 solar rotations. Conclusions. This study provides a challenge for solar dynamo models, as our results indicate that the non-axisymmetric spotgenerating mechanism experiences differential rotation (known as phase mixing in dynamo theory). The new nonparametric method introduced here, completely independent of the choice of the longitudinal distribution of sunspots, was found to be a useful tool for spatio-temporal analysis of surface features.
Astronomy and Astrophysics | 2015
Nigul Olspert; Maarit J. Käpylä; J. Pelt; Elizabeth Cole; T. Hackman; Jyri Lehtinen; Gregory W. Henry
We study LQ Hya photometry for 1982-2014 with the carrier fit (CF) -method and compare our results to earlier photometric analysis and recent Doppler imaging maps. We first utilize different types of statistical methods to estimate various candidates for the carrier period for the CF method. Secondly, a global fit to the whole data set and local fits to shorter segments are computed with the period that is found to be the optimal one. The harmonic least-squares analysis of all the available data reveals a short period close to 1.6 days as a limiting value for a set of significant frequencies. We interpret this as the rotation period of the spots near the equatorial region. In addition, the distribution of the significant periods is found to be bimodal, hinting of a longer-term modulating period, which we set out to study with a two-harmonic CF model. Weak modulation signal is, indeed retrieved, with a period of roughly 6.9 years. The phase dispersion analysis gives a clear symmetric minimum for coherence times lower than and around 100 days. We interpret this as the mean rotation period of the spots (1.60514 days), and this value is chosen to be used as the carrier period for the CF analysis. With the CF method we seek for any systematic trends in the spot distribution in the global time frame, and locally look for abrupt phase changes earlier reported in rapidly rotating objects. During 2005-2008 the global CF reveals a coherent structure rotating with a period of 1.6037 days, while during most other times the spot distribution appears rather random in phase. The evolution of the spot distribution of the object is found to be very chaotic, with no clear signs of an azimuthal dynamo wave that would persist over longer time scales, although the short-lived coherent structures observed occasionally do not rotate with the same speed as the mean spot distribution.