Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Peter W. Young is active.

Publication


Featured researches published by J. Peter W. Young.


Nature Reviews Microbiology | 2007

The role of ecological theory in microbial ecology

James I. Prosser; Brendan J. M. Bohannan; Thomas P. Curtis; Richard J. Ellis; Mary K. Firestone; Robert P. Freckleton; Jessica L. Green; Laura E. Green; Ken Killham; Jack J. Lennon; A. Mark Osborn; Martin Solan; Christopher J. van der Gast; J. Peter W. Young

Microbial ecology is currently undergoing a revolution, with repercussions spreading throughout microbiology, ecology and ecosystem science. The rapid accumulation of molecular data is uncovering vast diversity, abundant uncultivated microbial groups and novel microbial functions. This accumulation of data requires the application of theory to provide organization, structure, mechanistic insight and, ultimately, predictive power that is of practical value, but the application of theory in microbial ecology is currently very limited. Here we argue that the full potential of the ongoing revolution will not be realized if research is not directed and driven by theory, and that the generality of established ecological theory must be tested using microbial systems.


FEMS Microbiology Ecology | 2008

Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi

Jaikoo Lee; Sangsun Lee; J. Peter W. Young

A set of PCR primers that should amplify all subgroups of arbuscular mycorrhizal fungi (AMF, Glomeromycota), but exclude sequences from other organisms, was designed to facilitate rapid detection and identification directly from field-grown plant roots. The small subunit rRNA gene was targeted for the new primers (AML1 and AML2) because phylogenetic relationships among the Glomeromycota are well understood for this gene. Sequence comparisons indicate that the new primers should amplify all published AMF sequences except those from Archaeospora trappei. The specificity of the new primers was tested using 23 different AMF spore morphotypes from trap cultures and Miscanthus sinensis, Glycine max and Panax ginseng roots sampled from the field. Non-AMF DNA of 14 plants, 14 Basidiomycota and 18 Ascomycota was also tested as negative controls. Sequences amplified from roots using the new primers were compared with those obtained using the established NS31 and AM1 primer combination. The new primers have much better specificity and coverage of all known AMF groups.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis

Emilie Tisserant; Mathilde Malbreil; Alan Kuo; Annegret Kohler; Aikaterini Symeonidi; Raffaella Balestrini; Philippe Charron; Nina Duensing; Nicolas Frei dit Frey; Vivienne Gianinazzi-Pearson; Luz B. Gilbert; Yoshihiro Handa; Joshua R. Herr; Mohamed Hijri; Raman Koul; Masayoshi Kawaguchi; Franziska Krajinski; Peter J. Lammers; Frédéric Masclaux; Claude Murat; Emmanuelle Morin; Steve Ndikumana; Marco Pagni; Denis Petitpierre; Natalia Requena; Pawel Rosikiewicz; Rohan Riley; Katsuharu Saito; Hélène San Clemente; Harris Shapiro

Significance The arbuscular mycorrhizal symbiosis between fungi of the Glomeromycota phylum and plants involves more than two-thirds of all known plant species, including important crop species. This mutualistic symbiosis, involving one of the oldest fungal lineages, is arguably the most ecologically and agriculturally important symbiosis in terrestrial ecosystems. The Glomeromycota are unique in that their spores and coenocytic hyphae contain hundreds of nuclei in a common cytoplasm, which raises important questions about the natural selection, population genetics, and gene expression of these highly unusual organisms. Study of the genome of Rhizophagus irregularis provides insight into genes involved in obligate biotrophy and mycorrhizal symbioses and the evolution of an ancient asexual organism, and thus is of fundamental importance to the field of genome evolution. The mutualistic symbiosis involving Glomeromycota, a distinctive phylum of early diverging Fungi, is widely hypothesized to have promoted the evolution of land plants during the middle Paleozoic. These arbuscular mycorrhizal fungi (AMF) perform vital functions in the phosphorus cycle that are fundamental to sustainable crop plant productivity. The unusual biological features of AMF have long fascinated evolutionary biologists. The coenocytic hyphae host a community of hundreds of nuclei and reproduce clonally through large multinucleated spores. It has been suggested that the AMF maintain a stable assemblage of several different genomes during the life cycle, but this genomic organization has been questioned. Here we introduce the 153-Mb haploid genome of Rhizophagus irregularis and its repertoire of 28,232 genes. The observed low level of genome polymorphism (0.43 SNP per kb) is not consistent with the occurrence of multiple, highly diverged genomes. The expansion of mating-related genes suggests the existence of cryptic sex-related processes. A comparison of gene categories confirms that R. irregularis is close to the Mucoromycotina. The AMF obligate biotrophy is not explained by genome erosion or any related loss of metabolic complexity in central metabolism, but is marked by a lack of genes encoding plant cell wall-degrading enzymes and of genes involved in toxin and thiamine synthesis. A battery of mycorrhiza-induced secreted proteins is expressed in symbiotic tissues. The present comprehensive repertoire of R. irregularis genes provides a basis for future research on symbiosis-related mechanisms in Glomeromycota.


Applied and Environmental Microbiology | 2004

Nonlegumes, Legumes, and Root Nodules Harbor Different Arbuscular Mycorrhizal Fungal Communities

Tanja R. Scheublin; Karyn P. Ridgway; J. Peter W. Young; Marcel G. A. van der Heijden

ABSTRACT Legumes are an important plant functional group since they can form a tripartite symbiosis with nitrogen-fixing Rhizobium bacteria and phosphorus-acquiring arbuscular mycorrhizal fungi (AMF). However, not much is known about AMF community composition in legumes and their root nodules. In this study, we analyzed the AMF community composition in the roots of three nonlegumes and in the roots and root nodules of three legumes growing in a natural dune grassland. We amplified a portion of the small-subunit ribosomal DNA and analyzed it by using restriction fragment length polymorphism and direct sequencing. We found differences in AMF communities between legumes and nonlegumes and between legume roots and root nodules. Different plant species also contained different AMF communities, with different AMF diversity. One AMF sequence type was much more abundant in legumes than in nonlegumes (39 and 13%, respectively). Root nodules contained characteristic AMF communities that were different from those in legume roots, even though the communities were similar in nodules from different legume species. One AMF sequence type was found almost exclusively in root nodules. Legumes and root nodules have relatively high nitrogen concentrations and high phosphorus demands. Accordingly, the presence of legume- and nodule-related AMF can be explained by the specific nutritional requirements of legumes or by host-specific interactions among legumes, root nodules, and AMF. In summary, we found that AMF communities vary between plant functional groups (legumes and nonlegumes), between plant species, and between parts of a root system (roots and root nodules).


Molecular Ecology | 2010

Burkholderia species are ancient symbionts of legumes

Cyril Bontemps; Geoffrey N. Elliott; Marcelo F. Simon; Fábio Bueno dos Reis Junior; Eduardo Gross; Rebecca C. Lawton; Nicolau Elias Neto; M. F. Loureiro; Sergio Miana de Faria; Janet I. Sprent; Euan K. James; J. Peter W. Young

Burkholderia has only recently been recognized as a potential nitrogen-fixing symbiont of legumes, but we find that the origins of symbiosis in Burkholderia are much deeper than previously suspected. We sampled 143 symbionts from 47 native species of Mimosa across 1800 km in central Brazil and found that 98% were Burkholderia. Gene sequences defined seven distinct and divergent species complexes within the genus Burkholderia. The symbiosis-related genes formed deep Burkholderia-specific clades, each specific to a species complex, implying that these genes diverged over a long period within Burkholderia without substantial horizontal gene transfer between species complexes.


Applied and Environmental Microbiology | 2005

Proof that Burkholderia Strains Form Effective Symbioses with Legumes: a Study of Novel Mimosa-Nodulating Strains from South America

Wen-Ming Chen; Sergio Miana de Faria; Rosângela Straliotto; Rosa Maria Pitard; Jean Luiz Simões-Araújo; Jui-Hsing Chou; Yi-Ju Chou; Edmundo Barrios; Alan R. Prescott; Geoffrey N. Elliott; Janet I. Sprent; J. Peter W. Young; Euan K. James

ABSTRACT Twenty Mimosa-nodulating bacterial strains from Brazil and Venezuela, together with eight reference Mimosa-nodulating rhizobial strains and two other β-rhizobial strains, were examined by amplified rRNA gene restriction analysis. They fell into 16 patterns and formed a single cluster together with the known β-rhizobia, Burkholderia caribensis, Burkholderia phymatum, and Burkholderia tuberum. The 16S rRNA gene sequences of 15 of the 20 strains were determined, and all were shown to belong to the genus Burkholderia; four distinct clusters could be discerned, with strains isolated from the same host species usually clustering very closely. Five of the strains (MAP3-5, Br3407, Br3454, Br3461, and Br3469) were selected for further studies of the symbiosis-related genes nodA, the NodD-dependent regulatory consensus sequences (nod box), and nifH. The nodA and nifH sequences were very close to each other and to those of B. phymatum STM815, B. caribensis TJ182, and Cupriavidus taiwanensis LMG19424 but were relatively distant from those of B. tuberum STM678. In addition to nodulating their original hosts, all five strains could also nodulate other Mimosa spp., and all produced nodules on Mimosa pudica that had nitrogenase (acetylene reduction) activities and structures typical of effective N2-fixing symbioses. Finally, both wild-type and green fluorescent protein-expressing transconjugant strains of Br3461 and MAP3-5 produced N2-fixing nodules on their original hosts, Mimosa bimucronata (Br3461) and Mimosa pigra (MAP3-5), and hence this confirms strongly that Burkholderia strains can form effective symbioses with legumes.


FEMS Microbiology Ecology | 2002

Temporal variation in the arbuscular mycorrhizal communities colonising seedlings in a tropical forest

Rebecca Husband; Edward Allen Herre; J. Peter W. Young

Abstract In order to investigate temporal variation in the arbuscular mycorrhizal (AM) fungal community in a tropical forest in the Republic of Panama, seedlings of the canopy emergent Tetragastris panamensis were sampled three times over a period of 3 years. We used AM-specific primers to amplify and clone partial small subunit ribosomal RNA gene sequences. Over 550 clones were classified into 18 AM fungal types. As the seedlings matured, the fungal diversity decreased and there was a significant shift so that previously rare types replaced formerly dominant fungal types. Further, seedlings of different ages sampled at the same time point were colonised by significantly different fungal populations. Our results indicate that both time and host age may influence the mycorrhizal population.


New Phytologist | 2010

Nodulation and nitrogen fixation by Mimosa spp. in the Cerrado and Caatinga biomes of Brazil

Fábio Bueno dos Reis; Marcelo F. Simon; Eduardo Gross; Robert M. Boddey; Geoffrey N. Elliott; Nicolau Elias Neto; M. de Fatima Loureiro; Luciano Paganucci de Queiroz; Maria Rita Scotti; Wen-Ming Chen; Agneta Norén; Maria C. Rubio; Sergio Miana de Faria; Cyril Bontemps; Silvia Regina Goi; J. Peter W. Young; Janet I. Sprent; Euan K. James

*An extensive survey of nodulation in the legume genus Mimosa was undertaken in two major biomes in Brazil, the Cerrado and the Caatinga, in both of which there are high degrees of endemicity of the genus. *Nodules were collected from 67 of the 70 Mimosa spp. found. Thirteen of the species were newly reported as nodulating. Nodules were examined by light and electron microscopy, and all except for M. gatesiae had a structure typical of effective Mimosa nodules. The endosymbiotic bacteria in nodules from all of the Mimosa spp. were identified as Burkholderia via immunolabelling with an antibody against Burkholderia phymatum STM815. *Twenty of the 23 Mimosa nodules tested were shown to contain nitrogenase by immunolabelling with an antibody to the nitrogenase Fe- (nifH) protein, and using the delta(15)N ((15)N natural abundance) technique, contributions by biological N(2) fixation of up to 60% of total plant N were calculated for Caatinga Mimosa spp. *It is concluded that nodulation in Mimosa is a generic character, and that the preferred symbionts of Brazilian species are Burkholderia. This is the first study to demonstrate N(2) fixation by beta-rhizobial symbioses in the field.


Environmental Microbiology | 2009

Burkholderia spp. are the most competitive symbionts of Mimosa, particularly under N‐limited conditions

Geoffrey N. Elliott; Jui-Hsing Chou; Wen-Ming Chen; Guido V. Bloemberg; Cyril Bontemps; Esperanza Martínez-Romero; Encarna Velázquez; J. Peter W. Young; Janet I. Sprent; Euan K. James

Bacteria isolated from Mimosa nodules in Taiwan, Papua New Guinea, Mexico and Puerto Rico were identified as belonging to either the alpha- or beta-proteobacteria. The beta-proteobacterial Burkholderia and Cupriavidus strains formed effective symbioses with the common invasive species Mimosa diplotricha, M. pigra and M. pudica, but the alpha-proteobacterial Rhizobium etli and R. tropici strains produced a range of symbiotic phenotypes from no nodulation through ineffective to effective nodulation, depending on Mimosa species. Competition studies were performed between three of the alpha-proteobacteria (R. etli TJ167, R. tropici NGR181 and UPRM8021) and two of the beta-rhizobial symbionts (Burkholderia mimosarum PAS44 and Cupriavidus taiwanensis LMG19424) for nodulation of these invasive Mimosa species. Under flooded conditions, B. mimosarum PAS44 out-competed LMG19424 and all three alpha-proteobacteria to the point of exclusion. This advantage was not explained by initial inoculum levels, rates of bacterial growth, rhizobia-rhizobia growth inhibition or individual nodulation rate. However, the competitive domination of PAS44 over LMG19424 was reduced in the presence of nitrate for all three plant hosts. The largest significant effect was for M. pudica, in which LMG19424 formed 57% of the nodules in the presence of 0.5 mM potassium nitrate. In this host, ammonium also had a similar, but lesser, effect. Comparable results were also found using an N-containing soil mixture, and environmental N levels are therefore suggested as a factor in the competitive success of the bacterial symbiont in vivo.


New Phytologist | 2009

The mitochondrial genome sequence of the arbuscular mycorrhizal fungus Glomus intraradices isolate 494 and implications for the phylogenetic placement of Glomus

Jaikoo Lee; J. Peter W. Young

* We have determined the complete mitochondrial genome sequence of an isolate of Glomus intraradices, a widespread and well-studied species of arbuscular mycorrhizal fungus. * The total genomic DNA of 24 spores from an in vitro root organ culture of the Swiss isolate G. intraradices 494 was amplified by multiple displacement and sequenced using the Roche 454 FLX platform. Contigs were joined by PCR and Sanger sequencing. * The circular genome map of 70 606 bp has a G + C content of 37.2%. All the standard fungal mitochondrial genes are present and encoded on the same strand. There are 26 introns and five complete LAGLIDADG homing endonuclease genes. There is no evidence of substantial sequence variation. * A well-supported phylogeny based on 14 mitochondrially encoded proteins indicates that the Glomeromycota are not the sister group of the Dikarya.

Collaboration


Dive into the J. Peter W. Young's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wen-Ming Chen

National Kaohsiung Marine University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sergio Miana de Faria

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jui-Hsing Chou

National Chung Hsing University

View shared research outputs
Researchain Logo
Decentralizing Knowledge