J. Portugal
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. Portugal.
Cell Cycle | 2006
Sylvia Mansilla; Waldemar Priebe; J. Portugal
Exposure of MDA-MB-231 and MCF-7/VP human breast carcinoma cells to theanthracyclines doxorubicin and WP631 induced polyploidy, formation of multinucleated cellsand cell death by mitotic catastrophe through caspase-dependent and caspase-independentmechanisms. In both cell lines, the antiproliferative effect of WP631 was higher than that ofdoxorubicin and a transient halt in G2/M was observed without cell senescence, while p53-dependent apoptosis did not occur in these cells. Mitotic catastrophe was linked to necrosis, butalso to apoptosis-like death, estimated by differential cell staining with Annexin-V-fluoresceinand propidium iodide. Drug-induced changes in the expression of c-myc and p21WAF1, and in theirrespective protein levels, were observed. They depended on the cell line, the anthracycline usedand its concentration, and they were consistent with the cell cycle progression through G2 tomitosis. Significant activation of caspase-2 and caspase-3 was only observed in MDA-MB-231cells treated with doxorubicin but not with WP631, indicating that caspases may be notmandatory for the occurrence of cell death through mitotic catastrophe. In MCF-7/VP cells,which do not express functional caspase-3, mitotic catastrophe was also induced.
Current Pharmaceutical Design | 2010
J. Portugal; Sylvia Mansilla; Marc Bataller
Mitotic catastrophe is a mechanism of cell death characterized by the occurrence of aberrant mitosis with the formation of large cells that contain multiple nuclei, which are morphologically distinguishable from apoptotic cells. Sometimes, mitotic catastrophe is used restrictively to indicate a type of cell death that occurs during or after a faulty mitosis leading to cell death, which takes place via necrosis or apoptosis, rather than a cell death itself. Several antitumor drugs and ionizing radiation are known to induce mitotic catastrophe, but precisely how the ensuring lethality is regulated or what signals are involved is barely characterized. The type of cell death resulting from antitumor therapy can be determined by the mechanism of action of the antitumor agent, dosing regimen of the therapy, and the genetic background in the cells being treated. Wild-type p53 promotes apoptosis or senescence, while mitotic catastrophe is independent of p53. Mitotic catastrophe can be regarded as a delayed response of p53-mutant tumors that are resistant to some damage. In this context, the elucidation of the mechanisms of treatment-induced mitotic catastrophe should contribute to an improvement of the antitumor therapy, because most of the solid tumors bear an inactive p53 protein.
Pharmacology & Therapeutics | 2015
Carolina Vizcaíno; Sylvia Mansilla; J. Portugal
Sp1 (specificity protein 1) is a well-known member of a family of transcription factors that also includes Sp2, Sp3 and Sp4, which are implicated in an ample variety of essential biological processes and have been proven important in cell growth, differentiation, apoptosis and carcinogenesis. Sp1 activates the transcription of many cellular genes that contain putative CG-rich Sp-binding sites in their promoters. Sp1 and Sp3 proteins bind to similar, if not the same, DNA tracts and compete for binding, thus they can enhance or repress gene expression. Evidences exist that the Sp-family of proteins regulates the expression of genes that play pivotal roles in cell proliferation and metastasis of various tumors. In patients with a variety of cancers, high levels of Sp1 protein are considered a negative prognostic factor. A plethora of compounds can interfere with the trans-activating activities of Sp1 and other Sp proteins on gene expression. Several pathways are involved in the down-regulation of Sp proteins by compounds with different mechanisms of action, which include not only the direct interference with the binding of Sp proteins to their putative DNA binding sites, but also promoting the degradation of Sp protein factors. Down-regulation of Sp transcription factors and Sp1-regulated genes is drug-dependent and it is determined by the cell context. The acknowledgment that several of those compounds are safe enough might accelerate their introduction into clinical usage in patients with tumors that over-express Sp1.
Anti-cancer Agents in Medicinal Chemistry | 2006
Sylvia Mansilla; Marc Bataller; J. Portugal
According to a widespread model, anti-cancer chemotherapy involves the triggering of tumor cells to undergo apoptosis, so apoptosis-resistant cells would be recalcitrant to such therapy. However, in addition to apoptosis, which is mainly dependent on the activity of the tumor suppressor protein p53, cells can be eliminated following DNA damage by other mechanisms. Mitotic catastrophe, a form of cell death that results from abnormal mitosis, is one such mechanism. While the term mitotic catastrophe has been used to describe a type of cell death that occurs during mitosis, there is still no broadly accepted definition. Occasionally, mitotic catastrophe is used restrictively for abnormal mitosis leading to cell death, which can occur through necrosis or apoptosis, rather than cell death itself. Although different classes of cytotoxic agents induce mitotic catastrophe, the pathways of abnormal mitosis differ depending on the nature of the inducer and the status of cell-cycle checkpoints. Moreover, mitotic catastrophe can also develop because of aberrant re-entry of tumor cells into the cell cycle after prolonged growth arrest. Elucidation of the factors that regulate different aspects of treatment-induced mitotic catastrophe should assist in improving the efficacy of anti-cancer therapy, providing opportunities for the development of new drugs.
Biochemistry | 2010
Francisca Barceló; Miguel Ortiz-Lombardía; Miquel Martorell; Miquel Oliver; Carmen Méndez; José A. Salas; J. Portugal
The antitumor antibiotics mithramycin A and chromomycin A(3) bind reversibly to the minor groove of G/C-rich regions in DNA in the presence of dications such as Mg(2+), and their antiproliferative activity has been associated with their ability to block the binding of certain transcription factors to gene promoters. Despite their biological activity, their use as anticancer agents is limited by severe side effects. Therefore, in our pursuit of new structurally related molecules showing both lower toxicity and higher biological activity, we have examined the binding to DNA of six analogues that we have obtained by combinatorial biosynthetic procedures in the producing organisms. All these molecules bear a variety of changes in the side chain attached to C-3 of the chromophore. The spectroscopic characterization of their binding to DNA followed by the evaluation of binding parameters and associated thermodynamics revealed differences in their binding affinity. DNA binding was entropically driven, dominated by the hydrophobic transfer of every compound from solution into the minor groove of DNA. Among the analogues, mithramycin SDK and chromomycin SDK possessed the higher DNA binding affinities.
Biochemical Journal | 2003
Sylvia Mansilla; Benjamin Piña; J. Portugal
We used a human cDNA macroarray containing various oncogenes and tumour suppressor genes to assess gene expression profiles in early-passage Jurkat T lymphocytes treated with clinically relevant concentrations of the antitumour antibiotic daunorubicin. Several oncogenes and tumour suppressor genes were either up- or down-regulated depending on the daunorubicin concentration used. The expression levels of some of these genes were confirmed by semi-quantitative reverse transcriptase-PCR. We also compared the changes in cell-cycle distribution and the apoptotic morphological characteristics of the cells treated with daunorubicin, using flow cytometry and fluorescence microscopy. Exposure to 182 nM daunorubicin (its IC(75) in Jurkat T cells: where IC(75) is the drug concentration that inhibits growth by 75%) resulted in cell-cycle arrest in G(1) and almost immediate apoptosis. In contrast, decreasing the drug concentration to 91 nM (close to the IC(50)) caused G(2) arrest and cell senescence-like growth arrest, whereas features of apoptosis and necrosis appeared only after longer incubation times. Gene expression profiles, cell-cycle distribution, the presence of DNA damage and the time-dependent response of Jurkat T cells to cell death were correlated clearly. The general behaviour of the genes suggests that cell-cycle arrest and cell death follow distinct pathways depending on drug concentration.
Tumori | 2009
J. Portugal; Marc Bataller; Sylvia Mansilla
Failure to eliminate cancer cells that have been exposed to cytotoxic agents may contribute to the development of resistance to antitumor drugs. A widespread model in present day oncology is that antitumor therapy involves the triggering of tumor cells to undergo apoptosis, and cells that can avoid apoptosis will be resistant to such therapy. Apoptosis is a defined program of cell death that is markedly influenced by the fact that many routes leading to it are mutated or deregulated in human cancer. Mutations in the tumor suppressor protein p53, a common feature of many cancers, may decrease the sensitivity of cells to some antitumor agents. Moreover, it has been increasingly reported that antitumor therapy not only causes apoptosis, but other forms of cell death as well, such as mitotic catastrophe, necrosis and autophagy, or a permanent cell arrest with phenotype characteristics of senescence. Mitotic catastrophe is a form of cell death that results from abnormal mitosis, which does not seem to depend on wild-type p53. Sometimes mitotic catastrophe is used restrictively for faulty mitosis leading to cell death, which may occur via apoptosis or necrosis. We critically review herein how antitumor therapy may elicit the response of human cancers through different cell pathways leading to cell death.
Nucleic Acids Research | 2007
Francisca Barceló; Claudia Scotta; Miguel Ortiz-Lombardía; Carmen Méndez; José Alfredo Uribe Salas; J. Portugal
The antitumour antibiotic mithramycin A (MTA) is a DNA minor-groove binding ligand. It binds to C/G-rich tracts as a dimer that forms in the presence of divalent cations such as Mg2+. Differential scanning calorimetry, UV thermal denaturation, isothermal titration calorimetry and competition dialysis were used, together with computations of the hydrophobic free energy of binding, to determine the thermodynamic profile of MTA binding to DNA. The results were compared to those obtained in parallel using the structurally related mithramycin SK (MSK). The binding of MTA to salmon testes DNA determined by UV melting studies (Kobs = 1.2 (±0.3) × 105 M−1) is tighter than that of MSK (2.9 (±1.0) × 104 M−1) at 25°C. Competition dialysis studies showed a tighter MTA binding to both salmon testes DNA (42% C + G) and Micrococcus lysodeikticus DNA (72% C + G). The thermodynamic analysis of binding data at 25°C shows that the binding of MTA and MSK to DNA is entropically driven, dominated by the hydrophobic transfer of the antibiotics from solution to the DNA-binding site. Direct molecular recognition between MTA or MSK and DNA through hydrogen bonding and van der Waals contacts may also contribute significantly to complex formation.
Biochimie | 2008
Sylvia Mansilla; J. Portugal
The analysis of how anthracyclines interfere with DNA-protein complexes, and the evaluation of their effects on gene transcription, can promote the development of new more specific anti-tumour agents. Daunorubicin and the bisintercalating anthracycline WP631 (which binds more tightly to DNA) have been compared for their ability to inhibit Sp1-DNA interactions and gene transcription. WP631 is more efficient at inhibiting transcription initiation from promoters containing an Sp1-binding site, and it is a potent inhibitor of Sp1-activated transcription both in vitro and in human cell lines. The analysis of gene expression profiles using arrays, which include several genes containing Sp1-putative binding sites, suggests that changes in the transcriptome induce cell cycle arrest and drive a time-dependent response of cells to death stimuli through distinct pathways, which rely on the anthracycline used and its concentration.
Biochemical Pharmacology | 2002
Silvia Villamarı́n; Neus Ferrer-Miralles; Sylvia Mansilla; Waldemar Priebe; J. Portugal
WP631, a new DNA-binding drug that bisintercalates into DNA with high affinity, seems to be highly cytotoxic against Jurkat T lymphocytes. The purpose of this study was to gain new insights into the mechanisms by which WP631 halts proliferation in this cell type. Treating Jurkat cells with nanomolar concentrations of WP631 produced G(2)/M arrest, inhibited the transcription of c-myc and p53 genes, and induced limited apoptosis during the duration of treatment. Suppression of c-myc and p53 expression, and time-dependent decline in c-Myc and p53 protein levels, was associated with growth arrest. A weak interdependence was also found between the potent antiproliferative activity and the apoptotic response; treatment with WP631 for 24-36hr produced arrest in G(2)/M and allowed for partial DNA repair. Longer treatments with WP631 allowed some repaired cells to re-enter the cell cycle, but produced aneuploidy or apoptosis in others.