Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. R. Gruesbeck is active.

Publication


Featured researches published by J. R. Gruesbeck.


The Astrophysical Journal | 2012

Carbon Ionization Stages as a Diagnostic of the Solar Wind

E. Landi; Robert L. Alexander; J. R. Gruesbeck; Jason A. Gilbert; S. T. Lepri; Ward B. Manchester; Thomas H. Zurbuchen

Oxygen charge states measured by in situ instrumentation have long been used as a powerful diagnostic of the solar corona and to discriminate between different solar wind regimes, both because they freeze in very close to the Sun, and because the oxygen element abundance is comparatively high, allowing for statistically relevant measures. Like oxygen, carbon is also rather abundant and freezes in very close to the Sun. Here, we show an analysis of carbon and oxygen ionic charge states. First, through auditory and Fourier analysis of in situ measurements of solar wind ion composition by ACE/SWICS we show that some carbon ion ratios are very sensitive to solar wind type, even more sensitive than the commonly used oxygen ion ratios. Then we study the evolution of the ionization states of carbon and oxygen by means of a freeze-in code, and find that carbon ions, commonly found in the solar wind, freeze in at comparable coronal distances, while oxygen ions evolve over a much larger range of coronal distances. Finally, we show that carbon and oxygen ion abundance ratios have similar sensitivity to the electron plasma temperature, but the carbon ratios are more robust against atomic physics uncertainties and a better indicator of the temperature of the solar wind source regions.


The Astrophysical Journal | 2012

A Global Two-temperature Corona and Inner Heliosphere Model: A Comprehensive Validation Study

M. Jin; Ward B. Manchester; B. van der Holst; J. R. Gruesbeck; Richard A. Frazin; E. Landi; Alberto M. Vasquez; P. L. Lamy; A. Llebaria; A. Fedorov; Gabor Zsolt Toth; Tamas I. Gombosi

The recent solar minimum with very low activity provides us a unique opportunity for validating solar wind models. During CR2077 (2008 November 20 through December 17), the number of sunspots was near the absolute minimum of solar cycle 23. For this solar rotation, we perform a multi-spacecraft validation study for the recently developed three-dimensional, two-temperature, Alfven-wave-driven global solar wind model (a component within the Space Weather Modeling Framework). By using in situ observations from the Solar Terrestrial Relations Observatory (STEREO) A and B, Advanced Composition Explorer (ACE), and Venus Express, we compare the observed proton state (density, temperature, and velocity) and magnetic field of the heliosphere with that predicted by the model. Near the Sun, we validate the numerical model with the electron density obtained from the solar rotational tomography of Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph C2 data in the range of 2.4 to 6 solar radii. Electron temperature and density are determined from differential emission measure tomography (DEMT) of STEREO A and B Extreme Ultraviolet Imager data in the range of 1.035 to 1.225 solar radii. The electron density and temperature derived from the Hinode/Extreme Ultraviolet Imaging Spectrometer data are also used to compare with the DEMT as well as the model output. Moreover, for the first time, we compare ionic charge states of carbon, oxygen, silicon, and iron observed in situ with the ACE/Solar Wind Ion Composition Spectrometer with those predicted by our model. The validation results suggest that most of the model outputs for CR2077 can fit the observations very well. Based on this encouraging result, we therefore expect great improvement for the future modeling of coronal mass ejections (CMEs) and CME-driven shocks.


The Astrophysical Journal | 2011

Constraints on Coronal Mass Ejection Evolution from in Situ Observations of Ionic Charge States

J. R. Gruesbeck; S. T. Lepri; Thomas H. Zurbuchen; Spiro K. Antiochos

We present a novel procedure for deriving the physical properties of coronal mass ejections (CMEs) in the corona. Our methodology uses in situ measurements of ionic charge states of C, O, Si, and Fe in the heliosphere and interprets them in the context of a model for the early evolution of interplanetary CME (ICME) plasma, between 2 and 5 R� . We find that the data are best fit by an evolution that consists of an initial heating of the plasma, followed by an expansion that ultimately results in cooling. The heating profile is consistent with a compression of coronal plasma due to flare reconnection jets and an expansion cooling due to the ejection, as expected from the standard CME/flare model. The observed frozen-in ionic charge states reflect this time history and, therefore, provide important constraints for the heating and expansion timescales, as well as the maximum temperature the CME plasma is heated to during its eruption. Furthermore, our analysis places severe limits on the possible density of CME plasma in the corona. We discuss the implications of our results for CME models and for future analysis of ICME plasma composition.


The Astrophysical Journal | 2012

NEW SOLAR WIND DIAGNOSTIC USING BOTH IN SITU AND SPECTROSCOPIC MEASUREMENTS

E. Landi; J. R. Gruesbeck; S. T. Lepri; Thomas H. Zurbuchen

We develop a new diagnostic technique that utilizes, at the same time, two completely different types of observations—in situ determinations of solar wind charge states and high-resolution spectroscopy of the inner solar corona—in order to study the temperature, density, and velocity of the solar wind as a function of height in the inner corona below the plasma freeze-in point. This technique relies on the ability to calculate the evolution of the ion charge composition as the solar wind escapes the Sun given the wind temperature, density, and velocity profiles as a function of distance. The resulting charge state composition can be used to predict frozen-in charge states as well as spectral line intensities. The predicted spectra and ion charge compositions can be compared with observations carried out when spectrometers and in situ instruments are in quadrature configuration to quantitatively test a set of assumptions regarding density, temperature, and velocity profiles in the low corona. Such a comparison can be used in two ways. If the input profiles are predicted by a theoretical solar wind model, this technique allows the benchmarking of the model. Otherwise, an empirical determination of the velocity, temperature, and density profiles can be achieved below the plasma freeze-in point applying a trial-and-error procedure to initial, user-specified profiles. To demonstrate this methodology, we have applied this technique to a state-of-the-art coronal hole and equatorial streamer model.


The Astrophysical Journal | 2012

Two-plasma Model for Low Charge State Interplanetary Coronal Mass Ejection Observations

J. R. Gruesbeck; S. T. Lepri; Thomas H. Zurbuchen

Recent ACE/SWICS observations have revealed that ~5% of all in situ observed interplanetary coronal mass ejections include time periods with very low charge state ions found to be associated with prominence eruptions. It was also shown that these low charge state ions are often observed concurrently with very high charge state ions. But, the physical process leading to these mixed charge states is not known and could be caused by either the mixing of plasmas of different temperatures or by non-local freeze-in effects as discussed by Gruesbeck. We provide a detailed and multi-stage analysis that excludes this latter option. We therefore conclude that time periods of very low charge states are the heliospheric remnants of plasmas born in prominences. We further conclude that the contemporaneously observed low and very high charge states are an indication of mixing of plasmas of different temperatures along magnetic field lines, suggesting that silicon and iron are depleted over carbon and oxygen in the cold, prominence-associated plasma. This represents the first experimental determination of elemental composition of prominence-associated plasma.


The Astrophysical Journal | 2012

Charge State Evolution in the Solar Wind. II. Plasma Charge State Composition in the Inner Corona and Accelerating Fast Solar Wind

E. Landi; J. R. Gruesbeck; S. T. Lepri; Thomas H. Zurbuchen; L. A. Fisk

In the present work, we calculate the evolution of the charge state distribution within the fast solar wind. We use the temperature, density, and velocity profiles predicted by Cranmer et al. to calculate the ionization history of the most important heavy elements in the solar corona and solar wind: C, N, O, Ne, Mg, Si, S, and Fe. The evolution of each charge state is calculated from the source region in the lower chromosphere to the final freeze-in point. We show that the solar wind velocity causes the plasma to experience significant departures from equilibrium at very low heights, well inside the field of view (within 0.6 R sun from the solar limb) of nearly all the available remote-sensing instrumentation, significantly affecting observed spectral line intensities. We also study the evolution of charge state ratios with distance from the source region, and the temperature they indicate if ionization equilibrium is assumed. We find that virtually every charge state from every element freezes in at a different height, so that the definition of freeze-in height is ambiguous. We also find that calculated freeze-in temperatures indicated by charge state ratios from in situ measurements have little relation to the local coronal temperature of the wind source region, and stop evolving much earlier than their correspondent charge state ratio. We discuss the implication of our results on plasma diagnostics of coronal holes from spectroscopic measurements as well as on theoretical solar wind models relying on coronal temperatures.


The Astrophysical Journal | 2012

Charge State Evolution in the Solar Wind. Radiative Losses in Fast Solar Wind Plasmas

E. Landi; J. R. Gruesbeck; S. T. Lepri; Thomas H. Zurbuchen; L. A. Fisk

We study the effects of departures from equilibrium on the radiative losses of the accelerating fast, coronal hole-associated solar wind plasma. We calculate the evolution of the ionic charge states in the solar wind with the Michigan Ionization Code and use them to determine the radiative losses along the wind trajectory. We use the velocity, electron temperature, and electron density predicted by Cranmer et al. as a benchmark case even though our approach and conclusions are more broadly valid. We compare non-equilibrium radiative losses to values calculated assuming ionization equilibrium at the local temperature, and we find that differences are smaller than 20% in the corona but reach a factor of three in the upper chromosphere and transition region. Non-equilibrium radiative losses are systematically larger than the equilibrium values, so that non-equilibrium wind plasma radiates more efficiently in the transition region. Comparing the magnitude of the dominant energy terms in the Cranmer et al. model, we find that wind-induced departures from equilibrium are of the same magnitude as the differences between radiative losses and conduction in the energy equation. We investigate which ions are most responsible for such effects, finding that carbon and oxygen are the main source of departures from equilibrium. We conclude that non-equilibrium effects on the wind energy equation are significant and recommend that they are included in theoretical models of the solar wind, at least for carbon and oxygen.


The Astrophysical Journal | 2015

Evidence for Local Acceleration of Suprathermal Heavy Ion Observations during Interplanetary Coronal Mass Ejections

J. R. Gruesbeck; S. T. Lepri; Thomas H. Zurbuchen; E. R. Christian

Suprathermal particles are an important seed population for a variety of energetic particles found throughout the heliosphere, but their origin is in debate. We present, for the first time, high-cadence observations of suprathermal heavy ions during interplanetary coronal mass ejections (ICMEs), from the Suprathermal Ion Composition Spectrometer on board the Wind spacecraft, and investigate their ionic composition and compare it to the bulk solar wind plasma composition, observed from the Solar Wind Ion Composition Spectrometer on board the Advanced Composition Explorer. We find that the composition of the suprathermal plasma is related to the local bulk solar wind plasma and not to the plasma upstream of the ICME. This implies that the suprathermal plasma is accelerated from the local bulk solar wind plasma and not the upstream solar wind plasma.


Proceedings of the International Astronomical Union | 2013

The in-situ manifestation of solar prominence material

S. T. Lepri; Thomas H. Zurbuchen; J. R. Gruesbeck; Jason A. Gilbert

Coronal mass ejections observed in the corona exhibit a three-part structure, with a leading bright front indicating dense plasma, a low density cavity thought to be a signature of the embedded magnetic flux rope, and the high density core likely containing cold, prominence material. When observed in-situ, as Interplanetary CMEs (or ICMEs), the presence of all three of these signatures remains elusive, with the prominence material rarely observed. We report on a comprehensive and long-term search for prominence material inside ICMEs as observed by the Solar Wind Ion Composition Spectrometer on the Advanced Composition Explorer. Using a novel data analysis process, we are able to identify traces of low charge state plasma created during prominence eruptions associated with ICMEs. We find that the likelihood of occurrence of cold material in the heliosphere is vastly lower than that observed in the corona but that conditions during the eruption do allow low charge ions to make it into the solar wind, preserving their expansion history. We discuss the implications of these findings.


Journal of Geophysical Research | 2005

Solar cycle-dependent helicity transport by magnetic clouds

Benjamin James Lynch; J. R. Gruesbeck; Thomas H. Zurbuchen; S. K. Antiochos

Collaboration


Dive into the J. R. Gruesbeck's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. T. Lepri

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

E. Landi

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. K. Antiochos

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. A. Fisk

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

M. Jin

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge