J.R. Willis
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J.R. Willis.
Journal of The Mechanics and Physics of Solids | 1992
Zhigang Suo; C.-M. Kuo; D.M. Barnett; J.R. Willis
We Study cracks either in piezoelectrics, or on interfaces between piezoelectrics and other materials such as metal electrodes or polymer matrices. The projected applications include ferroelectric actuators operating statically or cyclically, over the major portion of the samples, in the linear regime of the constitutive curve, but the elevated field around defects causes the materials to undergo hysteresis locally. The fracture mechanics viewpoint is adopted—that is, except for a region localized at the crack tip, the materials are taken to be linearly piezoelectric. The problem thus breaks into two subproblems: (i) determining the macroscopic field regarding the crack tip as a physically structureless point, and (ii) considering the hysteresis and other irreversible processes near the crack tip at a relevant microscopic level. The first Subproblem, which prompts a phenomenological fracture theory, receives a thorough investigation in this paper. Griffiths energy accounting is extended to include energy change due to both deformation and polarization. Four modes of square root singularities are identified at the tip of a crack in a homogeneous piezoelectric. A new type of singularity is discovered around interface crack tips. Specifically, the singularities in general form two pairs: r12±iϵand r12±iϵ, where ϵ. and k are real numbers depending on the constitutive constants. Also solved is a class of boundary value problems involving many cracks on the interface between half-spaces. Fracture mechanics are established for ferroelectric ceramics under smallscale hysteresis conditions, which facilitates the experimental study of fracture resistance and fatigue crack growth under combined mechanical and electrical loading. Both poled and unpoled fcrroelectrie ceramics are discussed.
Journal of The Mechanics and Physics of Solids | 1977
J.R. Willis
Abstract B ounds of Hashin-Shtrikman type and self-consistent estimates for the overall properties of composites, which may be anisotropic, are developed. Bodies containing aligned ellipsoidal inclusions are considered particularly, generalizing previously known results. The overall thermal conductivity of a body containing aligned spheroidal inclusions is discussed as an example including, as limiting cases, bodies containing highly-conducting aligned needles and bodies containing aligned pennyshaped cracks.
Advances in Applied Mechanics | 1981
J.R. Willis
Publisher Summary This chapter focuses on variational and related methods for the overall properties of composites. A wide range of phenomena that are observable macroscopically are governed by partial differential equations that are linear and self-adjoint. This chapter is concerned with such phenomena for materials, such as fiber-reinforced composites or polycrystals, whose properties vary in a complicated fashion from point to point over a small, “microscopic” length scale, while they appear “on average” (that is, relative to the larger, macroscopic scale) to be uniform. This chapter treats the elastic behavior of composites, and emphasizes that a number of other properties (conductivity, viscosity of a suspension, etc.) are described by the same equations. Extensions to viscoelastic and thermoelastic behavior are presented, for both of which the variational characterization given is believed to be new. Problems, such as the resistance to flow of viscous fluid through a fixed bed of particles are mentioned, and a model problem that involves diffusion is presented in some detail. This displays the same difficulty in relation to divergence of an integral and is one problem of this type that has so far been approached variationally. Methods related to the Hashin–Shtrikman variational principle are also described in the chapter.
Journal of The Mechanics and Physics of Solids | 1996
W.J. Drugan; J.R. Willis
Abstract A variational formulation is employed to derive a micromechanics-based, explicit nonlocal constitutive equation relating the ensemble averages of stress and strain for a class of random linear elastic composite materials. For two-phase composites with any isotropic and statistically uniform distribution of phases (which themselves may have arbitrary shape and anisotropy), we show that the leading-order correction to a macroscopically homogeneous constitutive equation involves a term proportional to the second gradient of the ensemble average of strain. This nonlocal constitutive equation is derived in explicit closed form for isotropic material in the one case in which there exists a well-founded physical and mathematical basis for describing the materials statistics: a matrix reinforced (or weakened) by a random dispersion of nonoverlapping identical spheres. By assessing, when the applied loading is spatially-varying, the magnitude of the nonlocal term in this constitutive equation compared to the portion of the equation that relates ensemble average stresses and strains through a constant “overall” modulus tensor, we derive quantitative estimates for the minimum representative volume element (RVE) size, defined here as that over which the usual macroscopically homogeneous “effective modulus” constitutive models for composites can be expected to apply. Remarkably, for a maximum error of 5% of the constant “overall” modulus term, we show that the minimum RVE size is at most twice the reinforcement diameter for any reinforcement concentration level, for several sets of matrix and reinforcement moduli characterizing large classes of important structural materials. Such estimates seem essential for determining the minimum structural component size that can be treated by macroscopically homogeneous composite material constitutive representations, and also for the development of a fundamentally-based macroscopic fracture mechanics theory for composites. Finally, we relate our nonlocal constitutive equation explicitly to the ensemble average strain energy, and show how it is consistent with the stationary energy principle.
New Journal of Physics | 2006
Graeme W. Milton; Marc Briane; J.R. Willis
In this paper, we investigate how the form of the conventional elastodynamic equations changes under curvilinear transformations. The equations get mapped to a more general form in which the density is anisotropic and additional terms appear which couple the stress not only with the strain but also with the velocity, and the momentum gets coupled not only with the velocity but also with the strain. These are a special case of equations which describe the elastodynamic response of composite materials, and which it has been argued should apply to any material which has microstructure below the scale of continuum modelling. If composites could be designed with the required moduli then it could be possible to design elastic cloaking devices where an object is cloaked from elastic waves of a given frequency. To an outside observer it would appear as though the waves were propagating in a homogeneous medium, with the object and surrounding cloaking shell invisible. Other new elastodynamic equations also retain their form under curvilinear transformations. The question is raised as to whether all equations of microstructured continua have a form which is invariant under curvilinear space or space-time coordinate transformations. We show that the non-local bianisotropic electrodynamic equations have this invariance under space-time transformations and that the standard non-local, time-harmonic, electromagnetic equations are invariant under space transformations.
Journal of The Mechanics and Physics of Solids | 1995
P.Ponte Castañeda; J.R. Willis
Abstract Estimates of the Hashin-Shtrikman type are developed for the overall moduli of composites consisting of a matrix containing one or more populations of inclusions, when the spatial correlations of inclusion locations take particular “ellipsoidal” forms. Inclusion shapes can be selected independently of the shapes adopted for the spatial correlations. The formulae that result are completely explicit and easy to use. They are likely to be useful, in particular, for composites that have undergone a prior macroscopically uniform large deformation. To the extent that the statistics that are assumed may not be realized exactly, the formulae provide approximations. Since, however, they are derived as variational approximations for composites with some explicit statistics that are realizable, they are free from some of the drawbacks of competitor approximations such as that of Mori and Tanaka (1973 Acta Metall. 21, 571–574), which can generate tensors of effective moduli which fail to satisfy a necessary symmetry requirement. The new formulae are also the only ones known that take explicit account, at least approximately, of inclusion shape and spatial distribution independently.
Journal of The Mechanics and Physics of Solids | 1971
J.R. Willis
Abstract This paper contains a two-dimensional analysis of the stress field around a crack on the plane interface between two bonded dissimilar anisotropic elastic half-spaces. This analysis is then combined with the usual local form of the Griffith virtual work argument to give an explicit fracture criterion which involves a suitably defined ‘stress concentration vector’ and the specific surface energy of the bonded surfaces. This criterion has a simple structure and reduces to the conventional form of Irwin when the two half-spaces are isotropic and identical. The analysis is then extended to cracks moving uniformly and a local fracture criterion with the same structure as the static criterion is derived by an energy balance argument. The criterion is specialized to isotropic half-spaces for illustration, when it predicts that the speed of a crack on an interface between such media will be limited by a speed Vc which is slightly greater than the smaller of the two Rayleigh wave speeds. A by-product of the analysis is an expression for the displacement field of an arbitrary interfacial dislocation, either stationary or moving uniformly.
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences | 2007
Graeme W. Milton; J.R. Willis
In this paper, we suggest a new perspective, where Newtons second law of motion is replaced by a more general law which is a better approximation for describing the motion of seemingly rigid macroscopic bodies. We confirm a finding of Willis that the density of a body at a given frequency of oscillation can be anisotropic. The relation between the force and the acceleration is non-local (but causal) in time. Conversely, for every response function satisfying these properties, and having the appropriate high-frequency limit, there is a model which realizes that response function. In many circumstances, the differences between Newtons second law and the new law are small, but there are circumstances, such as in specially designed composite materials, where the difference is enormous. For bodies which are not seemingly rigid, the continuum equations of elastodynamics govern behaviour and also need to be modified. The modified versions of these equations presented here are a generalization of the equations proposed by Willis to describe elastodynamics in composite materials. It is argued that these new sets of equations may apply to all physical materials, not just composites. The Willis equations govern the behaviour of the average displacement field whereas one set of new equations governs the behaviour of the average-weighted displacement field, where the weighted displacement field may attach zero weight to ‘hidden’ areas in the material where the displacement may be unobservable or not defined. From knowledge of the average-weighted displacement field, one obtains an approximate formula for the ensemble averaged energy density. Two other sets of new equations govern the behaviour when the microstructure has microinertia, i.e. where there are internal spinning masses below the chosen scale of continuum modelling. In the first set, the average displacement field is assumed to be observable, while in the second set an average-weighted displacement field is assumed to be observable.
Journal of The Mechanics and Physics of Solids | 1966
J.R. Willis
Abstract T he title problem is reduced, by a Fourier transform method, to one of evaluating contour integrals and some explicit formulae are presented for transversely isotropic media. The theory is then extended to Hertzian impact. Finally, some numerical results are given for the impact of a rigid sphere on a cubic half-space.
Philosophical Magazine | 1990
J.R. Willis; S.C. Jain; R. Bullough
Abstract An exact closed-form formula is given for the energy of an array of dislocations, arranged periodically on the interface between an epitaxial layer and its substrate, when these are modelled as elastically isotropic with the same elastic constants. In the course of the formulation, the exact equivalence of equilibrium theories originating in the work of Frank and van der Merwe and of Matthews and Blakeslee is established. The new formula allows the exact assessment of arrays of dislocations in equilibrium, for layers thicker than critical. This demonstrates that previous approximations may be seriously in error.