J. Robert Lane
Monash University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. Robert Lane.
Science | 2008
Veli-Pekka Jaakola; Mark T. Griffith; Michael A. Hanson; Vadim Cherezov; Ellen Y.T. Chien; J. Robert Lane; Adriaan P. IJzerman; Raymond C. Stevens
The adenosine class of heterotrimeric guanine nucleotide–binding protein (G protein)–coupled receptors (GPCRs) mediates the important role of extracellular adenosine in many physiological processes and is antagonized by caffeine. We have determined the crystal structure of the human A2A adenosine receptor, in complex with a high-affinity subtype-selective antagonist, ZM241385, to 2.6 angstrom resolution. Four disulfide bridges in the extracellular domain, combined with a subtle repacking of the transmembrane helices relative to the adrenergic and rhodopsin receptor structures, define a pocket distinct from that of other structurally determined GPCRs. The arrangement allows for the binding of the antagonist in an extended conformation, perpendicular to the membrane plane. The binding site highlights an integral role for the extracellular loops, together with the helical core, in ligand recognition by this class of GPCRs and suggests a role for ZM241385 in restricting the movement of a tryptophan residue important in the activation mechanism of the class A receptors.
Science | 2009
Veli-Pekka Jaakola; Mark T. Griffith; Michael A. Hanson; Vadim Cherezov; Ellen Y.T. Chien; J. Robert Lane; Adriaan P. IJzerman; Raymond C. Stevens; Leiden; Amsterdam
The adenosine class of heterotrimeric guanine nucleotide–binding protein (G protein)–coupled receptors (GPCRs) mediates the important role of extracellular adenosine in many physiological processes and is antagonized by caffeine. We have determined the crystal structure of the human A2A adenosine receptor, in complex with a high-affinity subtype-selective antagonist, ZM241385, to 2.6 angstrom resolution. Four disulfide bridges in the extracellular domain, combined with a subtle repacking of the transmembrane helices relative to the adrenergic and rhodopsin receptor structures, define a pocket distinct from that of other structurally determined GPCRs. The arrangement allows for the binding of the antagonist in an extended conformation, perpendicular to the membrane plane. The binding site highlights an integral role for the extracellular loops, together with the helical core, in ligand recognition by this class of GPCRs and suggests a role for ZM241385 in restricting the movement of a tryptophan residue important in the activation mechanism of the class A receptors.
Nature | 2013
Ron O. Dror; Hillary F. Green; Celine Valant; David W. Borhani; James R. Valcourt; Albert C. Pan; Daniel H. Arlow; Meritxell Canals; J. Robert Lane; Raphaël Rahmani; Jonathan B. Baell; Patrick M. Sexton; Arthur Christopoulos; David E. Shaw
The design of G-protein-coupled receptor (GPCR) allosteric modulators, an active area of modern pharmaceutical research, has proved challenging because neither the binding modes nor the molecular mechanisms of such drugs are known. Here we determine binding sites, bound conformations and specific drug–receptor interactions for several allosteric modulators of the M2 muscarinic acetylcholine receptor (M2 receptor), a prototypical family A GPCR, using atomic-level simulations in which the modulators spontaneously associate with the receptor. Despite substantial structural diversity, all modulators form cation–π interactions with clusters of aromatic residues in the receptor extracellular vestibule, approximately 15 Å from the classical, ‘orthosteric’ ligand-binding site. We validate the observed modulator binding modes through radioligand binding experiments on receptor mutants designed, on the basis of our simulations, either to increase or to decrease modulator affinity. Simulations also revealed mechanisms that contribute to positive and negative allosteric modulation of classical ligand binding, including coupled conformational changes of the two binding sites and electrostatic interactions between ligands in these sites. These observations enabled the design of chemical modifications that substantially alter a modulator’s allosteric effects. Our findings thus provide a structural basis for the rational design of allosteric modulators targeting muscarinic and possibly other GPCRs.
Annual Review of Pharmacology and Toxicology | 2012
Celine Valant; J. Robert Lane; Patrick M. Sexton; Arthur Christopoulos
It is now acknowledged that G protein-coupled receptors, the largest class of drug targets, adopt multiple active states that can be preferentially stabilized by orthosteric ligands or allosteric modulators, thus giving rise to the phenomenon of pathway-biased signaling. In the past few years, researchers have begun to explore the potential of linking orthosteric and allosteric pharmacophores to yield bitopic hybrid ligands. This approach is an extension of the more traditional bivalent ligand concept and shares some of the same challenges, including the choice and role of the linker between the two pharmacophores and the validation of mechanism of action. Nonetheless, the promise of bitopic ligands is the generation of novel chemical tools that have improved affinity and/or selectivity profiles. Previously identified functionally selective compounds (and medicines) also may act via a bitopic mechanism, suggesting that the phenomenon is more widespread than currently appreciated.
Journal of Biological Chemistry | 2012
Meritxell Canals; J. Robert Lane; Adriel Wen; Peter J. Scammells; Patrick M. Sexton; Arthur Christopoulos
Background: The Monod-Wyman-Changeux (MWC) mechanism is the preeminent conformational selection model for allosteric proteins. Results: The novel allosteric ligand, BQCA, behaves according to a two-state MWC mechanism at the M1 muscarinic GPCR. Conclusion: Chemical biological properties of GPCR allosteric ligands can be rationalized by the MWC model. Significance: Application of our experimental framework to allosteric GPCR modulators can assist ligand classification and drug discovery. The Monod-Wyman-Changeux (MWC) model was initially proposed to describe the allosteric properties of regulatory enzymes and subsequently extended to receptors. Yet despite GPCRs representing the largest family of receptors and drug targets, no study has systematically evaluated the MWC mechanism as it applies to GPCR allosteric ligands. We reveal how the recently described allosteric modulator, benzyl quinolone carboxylic acid (BQCA), behaves according to a strict, two-state MWC mechanism at the M1 muscarinic acetylcholine receptor (mAChR). Despite having a low affinity for the M1 mAChR, BQCA demonstrated state dependence, exhibiting high positive cooperativity with orthosteric agonists in a manner that correlated with efficacy but negative cooperativity with inverse agonists. The activity of BQCA was significantly increased at a constitutively active M1 mAChR but abolished at an inactive mutant. Interestingly, BQCA possessed intrinsic signaling efficacy, ranging from near-quiescence to full agonism depending on the coupling efficiency of the chosen intracellular pathway. This latter cellular property also determined the difference in magnitude of positive cooperativity between BQCA and the orthosteric agonist, carbachol, across pathways. The lack of additional, pathway-biased, allosteric modulation by BQCA was confirmed in genetically engineered yeast strains expressing different chimeras between the endogenous yeast Gpa1 protein and human Gα subunits. These findings define a chemical biological framework that can be applied to the study and classification of allosteric modulators across different GPCR families.
Journal of Biological Chemistry | 2010
Veli-Pekka Jaakola; J. Robert Lane; Judy Lin; Vsevolod Katritch; Adriaan P. Ijzerman; Raymond C. Stevens
The crystal structure of the human A2A adenosine receptor bound to the A2A receptor-specific antagonist, ZM241385, was recently determined at 2.6-Å resolution. Surprisingly, the antagonist binds in an extended conformation, perpendicular to the plane of the membrane, and indicates a number of interactions unidentified before in ZM241385 recognition. To further understand the selectivity of ZM241385 for the human A2A adenosine receptor, we examined the effect of mutating amino acid residues within the binding cavity likely to have key interactions and that have not been previously examined. Mutation of Phe-168 to Ala abolishes both agonist and antagonist binding as well as receptor activity, whereas mutation of this residue to Trp or Tyr had only moderate effects. The Met-177 → Ala mutation impeded antagonist but not agonist binding. Finally, the Leu-249 → Ala mutant showed neither agonist nor antagonist binding affinity. From our results and previously published mutagenesis data, we conclude that conserved residues Phe-168(5.29), Glu-169(5.30), Asn-253(6.55), and Leu-249(6.51) play a central role in coordinating the bicyclic core present in both agonists and antagonists. By combining the analysis of the mutagenesis data with a comparison of the sequences of different adenosine receptor subtypes from different species, we predict that the interactions that determine subtype selectivity reside in the more divergent “upper” region of the binding cavity while the “lower” part of the binding cavity is conserved across adenosine receptor subtypes.
Medicinal Research Reviews | 2014
Jeremy Shonberg; Laura López; Peter J. Scammells; Arthur Christopoulos; Ben Capuano; J. Robert Lane
Historically, determination of G protein‐coupled receptor (GPCR) ligand efficacy has often been restricted to identifying the ligand as an agonist or antagonist at a given signaling pathway. This classification was deemed sufficient to predict compound efficacy at all signaling endpoints, including the therapeutically relevant one(s). However, it is now apparent that ligands acting at the same GPCR can stabilize multiple, distinct, receptor conformations linked to different functional outcomes. This phenomenon, known as biased agonism, stimulus bias, or functional selectivity offers the opportunity to separate on‐target therapeutic effects from side effects through the design of drugs that show pathway selectivity. However, the medicinal chemist faces numerous challenges to develop biased ligands, including the detection and quantification of biased agonism. This review summarizes the current state of the field of research into biased agonism at GPCRs, with a particular focus on efforts to relate biased agonism to ligand structure.
Journal of Medicinal Chemistry | 2010
Rajeshwar Narlawar; J. Robert Lane; Munikumar R. Doddareddy; Judy Lin; Johannes Brussee; Adriaan P. IJzerman
Many G protein-coupled receptors (GPCRs), including the adenosine A(1) receptor (A(1)AR), have been shown to be allosterically modulated by small molecule ligands. So far, in the absence of structural information, the exact location of the allosteric site on the A(1)AR is not known. We synthesized a series of bivalent ligands (4) with an increasing linker length between the orthosteric and allosteric pharmacophores and used these as tools to search for the allosteric site on the A(1)AR. The compounds were tested in both equilibrium radioligand displacement and functional assays in the absence and presence of a reference allosteric enhancer, (2-amino-4,5-dimethyl-3-thienyl)-[3-(trifluoromethyl)phenyl]methanone, PD81,723 (1). Bivalent ligand N(6)-[2-amino-3-(3,4-dichlorobenzoyl)-4,5,6,7-tetrahydrothieno[2,3-c]pyridin-6-yl-9-nonyloxy-4-phenyl]-adenosine 4h (LUF6258) with a 9 carbon atom spacer did not show significant changes in affinity or potency in the presence of 1, indicating that this ligand bridged both sites on the receptor. Furthermore, 4h displayed an increase in efficacy, but not potency, compared to the parent, monovalent agonist 2. From molecular modeling studies, we speculate that the allosteric site of the A(1)AR is located in the proximity of the orthosteric site, possibly within the boundaries of the second extracellular loop of the receptor.
Nature Chemical Biology | 2014
J. Robert Lane; Prashant Donthamsetti; Jeremy Shonberg; Christopher J. Draper-Joyce; Samuel Dentry; Mayako Michino; Lei Shi; Laura López; Peter J. Scammells; Ben Capuano; Patrick M. Sexton; Jonathan A. Javitch; Arthur Christopoulos
SB269652 (1) is the first drug-like allosteric modulator of the dopamine D2 receptor (D2R), but contains structural features associated with orthosteric D2R antagonists. Using a functional complementation system to control the identity of individual protomers within a dimeric D2R complex, we converted the pharmacology of the interaction between SB269652 and dopamine from allosteric to competitive by impairing ligand binding to one of the protomers, indicating that the allostery requires D2R dimers. Additional experiments identified a “bitopic” pose for SB269652 extending from the orthosteric site into a secondary pocket at the extracellular end of the transmembrane (TM) domain, involving TM2 and TM7. Engagement of this secondary pocket was a requirement for the allosteric pharmacology of SB269652. This suggests a novel mechanism whereby a bitopic ligand binds in an extended pose on one G protein-coupled receptor protomer to allosterically modulate the binding of a ligand to the orthosteric site of a second protomer.
Molecular Pharmacology | 2013
J. Robert Lane; Pavel Chubukov; Wei Liu; Meritxell Canals; Vadim Cherezov; Ruben Abagyan; Raymond C. Stevens; Vsevolod Katritch
Small molecules targeting allosteric pockets of G protein–coupled receptors (GPCRs) have a great therapeutic potential for the treatment of neurologic and other chronic disorders. Here we performed virtual screening for orthosteric and putative allosteric ligands of the human dopamine D3 receptor (D3R) using two optimized crystal-structure–based models: the receptor with an empty binding pocket (D3RAPO), and the receptor complex with dopamine (D3RDopa). Subsequent biochemical and functional characterization revealed 14 novel ligands with a binding affinity of better than 10 μM in the D3RAPO candidate list (56% hit rate), and 8 novel ligands in the D3RDopa list (32% hit rate). Most ligands in the D3RAPO model span both orthosteric and extended pockets and behave as antagonists at D3R, with compound 7 showing the highest potency of dopamine inhibition (IC50 = 7 nM). In contrast, compounds identified by the D3RDopa model are predicted to occupy an allosteric site at the extracellular extension of the pocket, and they all lack the anchoring amino group. Compounds targeting the allosteric site display a variety of functional activity profiles, where behavior of at least two compounds (23 and 26) is consistent with noncompetitive allosteric modulation of dopamine signaling in the extracellular signal-regulated kinase 1 and 2 phosphorylation and β-arrestin recruitment assays. The high affinity and ligand efficiency of the chemically diverse hits identified in this study suggest utility of structure-based screening targeting allosteric sites of GPCRs.