J. Romeu
Polytechnic University of Catalonia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. Romeu.
IEEE Transactions on Antennas and Propagation | 1998
Carles Puente-Baliarda; J. Romeu; R. Pous; Angel Cardama
The multiband behavior of the fractal Sierpinski (1915) antenna is described. Due to its mainly triangular shape, the antenna is compared to the well-known single-band bow-tie antenna. Both experimental and numerical results show that the self-similarity properties of the fractal shape are translated into its electromagnetic behavior. A deeper physical insight on such a behavior is achieved by means of the computed current densities over the antenna surface, which also display some similarity properties through the bands.
IEEE Transactions on Antennas and Propagation | 2000
Carles Puente Baliarda; J. Romeu; Angel Cardama
Fractal objects have some unique geometrical properties. One of them is the possibility to enclose in a finite area an infinitely long curve. The resulting curve is highly convoluted being nowhere differentiable. One such curve is the Koch curve. In this paper, the behavior the Koch monopole is numerically and experimentally analyzed. The results show that as the number of iterations on the small fractal Koch monopole are increased, the Q of the antenna approaches the fundamental limit for small antennas.
IEEE Transactions on Antennas and Propagation | 2000
J. Romeu; Yahya Rahmat-Samii
The multiband properties of self-similar fractals can be advantageously exploited to design multiband frequency selective surfaces (FSS). A Sierpinski dipole FSS has been analyzed and measured and the results show an interesting dual-band behavior. Furthermore a near-field measurement technique is applied to characterize the FSS response to different angles of incidence. Finally, it is shown that it is possible to tune the FSS response by properly perturbating the geometry of the Sierpinski dipole.
IEEE Transactions on Antennas and Propagation | 2003
Carmen Borja; J. Romeu
The properties of the Koch island fractal boundary microstrip patch antenna are presented. The behavior at the fundamental mode and the existence of high-order modes that exhibit localized current density distributions is discussed. The main features are the size reduction of the patch resonating at the fundamental frequency when compared to Euclidean-shaped patches, and the application of localized modes in designing microstrip patch antennas with directive patterns.
IEEE Transactions on Microwave Theory and Techniques | 1991
Antoni Broquetas; J. Romeu; Juan M. Rius; Antonio R. Elias-Fuste; Angel Cardama; L. Jofre
A prototype imaging system for active microwave tomography using cylindrical geometry has been developed, making it possible to obtain images of the dielectric properties of biological targets at 2.45 GHz. This configuration allows a fast exploration of body slices placed along the array axis, in a way similar to that of present X-ray scanners. The electromagnetic compatibility (EMC) of this approach is critical because the strongly attenuated received fields are measured on the same array which is being used to emit a high-level illuminating signal. Therefore, carefully designed high-frequency architectures and detection techniques are necessary. The system requires no mechanical movements to illuminate the body from multiple directions (views) and measure the scattered fields. In this way, a complete data set consisting of 64 views is acquired in 3 s using low-power illumination. The system is described, and images obtained with biological phantoms and actual bodies are presented. >
IEEE Transactions on Antennas and Propagation | 2001
J. Romeu; Jordi Soler
A new set of fractal multiband antennas called mod-p Sierpinski gaskets is presented. Mod-p Sierpinski fractal antennas derive from the Pascal triangle and present a log-periodic behavior, which is a consequence of their self-similarity properties. Mod-p Sierpinski fractal antennas constitute a generalization of the classical Sierpinski antenna.
IEEE Transactions on Antennas and Propagation | 2003
John P. Gianvittorio; J. Romeu; S. Blanch; Yahya Rahmat-Samii
Frequency-selective surfaces (FSS), that have been designed using fractal iterative techniques, have been fabricated and measured. Fractals contain many scaled copies of the starting geometry, each of which acts as a scaled version of the original. A multiband FSS can be designed that uses several iterations of the geometry to form a prefractal that resonates corresponding to each of the scales present in the geometry. Minkowski and Sierpinski carpet fractals have been utilized in the design of three surfaces which exhibit two or three stopbands depending on how many iterations are used to generate the geometry of the cell. These surfaces are dual polarized due to the symmetry of the geometry. Simulation capabilities have been developed to analyze these periodic structures, including periodic method of moments (MOM) and finite-difference time-domain (FDTD) techniques which show good correlation to the measured results.
Proceedings of the IEEE | 2010
Jean Charles Bolomey; S. Capdevila; Lluis Jofre; J. Romeu
Radio-frequency identification (RFID) technology relies on the modulated scattering technique (MST) as a means to convey the information from the tag to the reader. The interaction mechanism between the reader and the tag is described in a physically meaningful way by the reciprocity theorem which is deeply rooted into Maxwell equations. This approach provides a simple and yet complete formulation that allows to fully describe the interaction between the reader and the tag, even in complex environments. From this formulation, a clear understanding is derived on how the different design tradeoffs affect system performance. Based on this approach, the paper is focused on several issues of practical relevance for antenna tag design such as maximum power transfer, maximum sensitivity, and nonlinearity effects.
Radio Science | 1997
Adriano Camps; J. Bara; Francesc Torres; Ignasi Corbella; J. Romeu
A classification of system errors in aperture synthesis radiometry applied to Earth observation is presented. A general procedure to quantify the impact of antenna errors on the radiometric accuracy is developed and is then particularized to an L-band Y-shaped interferometer called MIRAS (microwave imaging radiometer by aperture synthesis) currently under study at the European Space Agency. This work analyzes in detail the impact of antenna errors on the radiometric accuracy of the instrument. These antenna errors are grouped into amplitude and phase antenna pattern errors, antenna position errors and antenna cross polarization errors. Special attention is paid to antenna coupling effects because of their importance in the selection of a suitable inversion algorithm for large aperture synthesis interferometers: the G-matrix techniques or the Fourier techniques proposed for MIRAS.
IEEE Transactions on Antennas and Propagation | 2010
A. Grau; J. Romeu; Ming-Jer Lee; S. Blanch; L. Jofre; F. De Flaviis
The design and characterization is described of a compact dual-linearly-polarized reconfigurable 2-port antenna. The antenna can operate in two different selectable linear polarization bases, thus being capable of reconfiguring/rotating its polarization base from vertical/horizontal (0°/90°), to slant ±45°. The antenna has been implemented on a quartz substrate, and uses monolithically integrated micro-electromechanical (MEM) switches to select between the two aforementioned polarization bases. The antenna operates at 3.8 GHz and presents a fractional bandwidth of 1.7%. The interest of the proposed antenna is two-fold. First, in LOS scenarios, the antenna enables polarization tracking in polarization-sensitive communication schemes. Second, there are the gains of using it in a multiple-input multiple-output (MIMO) communication system employing orthogonal space-time block codes (OSTBC) to improve the diversity order/gain of the system in NLOS conditions. These benefits were verified through channel measurements conducted in LOS and NLOS propagation scenarios. Despite the simplicity of the antenna, the achievable polarization matching gains (in LOS scenarios) and diversity gains (in NLOS scenarios) are remarkable. These gains come at no expenses of introducing additional receive ports to the system (increasing the number of radio-frequency (RF) transceivers), rather as a result of the reconfigurable capabilities of the proposed antenna.