Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. S. Mayorquin is active.

Publication


Featured researches published by J. S. Mayorquin.


Plant Disease | 2012

First Report of a Fusarium sp. and Its Vector Tea Shot Hole Borer (Euwallacea fornicatus) Causing Fusarium Dieback on Avocado in California

Akif Eskalen; A. Gonzalez; D. H. Wang; M. Twizeyimana; J. S. Mayorquin; S. C. Lynch

Per capita consumption of avocado in the United States has nearly doubled between 2000 and 2010. The California avocado industry supplies almost 40% of U.S. demand and the remaining 60% is supplied by imports from Latin America and New Zealand. The Tea Shot Hole Borer (TSHB) is an ambrosia beetle from Asia that forms a symbiosis with a new, yet undescribed Fusarium sp. and is a serious problem for the Israeli avocado industry (3). The beetle also causes severe damage on the branches of tea (Camelia sinensis) in Sri Lanka and India (1). In California, TSHB was first reported on black locust (Robinia pseudoacacia) in 2003, but there are no records of fungal damage (4). In 2012, nine backyard avocado trees (cvs. Hass, Bacon, Fuerte, and Nabal) exhibiting branch dieback were observed throughout the residential neighborhoods of South Gate, Downey, and Pico Rivera in Los Angeles County. Upon inspection, symptoms of white powdery exudate, either dry or surrounded by wet discoloration of the outer bark in association with a single beetle exit hole, were found on the trunk and main branches of the tree. Examination of the cortex and wood under the exit hole revealed brown discolored necrosis. The TSHB was also found within galleries that were 1 to 4 cm long going against the grain. Symptomatic cortex and sapwood tissues were plated onto potato dextrose agar amended with 0.01% tetracycline (PDA-tet). The TSHB was dissected and plated onto PDA-tet after surface disinfestation following methods described by Kajimura and Hijii (2). After 5 days of incubation at room temperature, regular fungal colonies with aerial mycelia and reddish brown margins were produced. Single spore isolations were used to establish pure culture of the fungus. Fifty conidia were hyaline, clavate with a rounded apex, and initially aseptate (4.1 to 12.0 × 2.4 to 4.1 μm) becoming one- to three-septate (7.6 to 15.1 × 2.8 to 4.5 μm, 9.2 to 17.2 × 3.4 to 4.8 μm, and 13.5 to 17.6 × 4.3 to 4.7 μm, respectively). Identity of the fungal isolates was determined by amplification of the rDNA genes with primers ITS4/5 and EF1/2, respectively. Sequences were deposited into GenBank under Accession Nos. JQ723753, JQ723760, JQ723756, and JQ723763. A BLASTn search revealed 100% similarity to Fusarium sp. (Accession Nos. JQ038020 and JQ038013). Detached green shoots of healthy 1-year-old avocado were wounded to a depth of 1 to 2 mm and 5-mm mycelial plugs from 5-day-old cultures (UCR 1781 and UCR 1837) were placed mycelial side down onto the freshly wounded surfaces and then wrapped with Parafilm. Control shoots were inoculated with sterile agar plugs and five replicates per treatment were used. Shoots were incubated at 25 ± 1°C in moist chambers for 3 weeks. Lesions were observed on all inoculated shoots except for the control. Mean lesion lengths were 10.7 and 12.8 cm for UCR1781 and UCR1837, respectively, and were significantly different (P ≤ 0.05) from the control. Both isolates were reisolated from 100% of symptomatic tissues of inoculated shoots to complete Kochs postulates. This experiment was conducted twice and similar results were obtained. To our knowledge, this is the first report of Fusarium sp. and its vector E. fornicatus causing Fusarium dieback on Avocado in California. References: (1) W. Danthanarayana. Tea Quarterly 39:61, 1968. (2) H. Kajimura and N. Hijii. Ecol. Res. 7:107, 1992; (3) Mendel et al., Phytoparasitica, DOI 10.1007/s12600-012-0223-7, 2012. (4) R. J. Rabaglia. Annals Entomol. Soc. Amer. 99:1034, 2006.


Mycologia | 2013

Identification and pathogenicity of Botryosphaeriaceae species associated with coast live oak (Quercus agrifolia) decline in southern California

Shannon Colleen Lynch; Akif Eskalen; Paul J. Zambino; J. S. Mayorquin; D. H. Wang

Symptoms of decline have been observed on dying coast live oak (Quercus agrifolia) trees in areas throughout southern California that are both infested and uninfested by the gold-spotted oak borer (GSOB). The purpose of this study was to identify and assess the pathogenicity of several anamorph species of the Botryosphaeriaceae, including Diplodia corticola, Dothiorella iberica and Diplodia agrifolia sp. nov., that were recovered consistently from symptomatic tissues. Species were identified morphologically and by phylogenetic analyses of the complete sequence of the internal transcribed spacer (ITS) of the rDNA and partial sequences of β-tubulin and elongation factor (EF1-α) genes. Results from morphological assessments and phylogenetic analyses support the erection of a new species closely related to D. mutila, described herein as Diplodia agrifolia sp. nov. Pathogenicity of all species was verified by wound inoculation of 1 y old coast live oak seedlings under controlled conditions. Isolates of D. corticola were the most aggressive tested, and isolates of D. agrifolia were the second most aggressive. Both species caused bleeding symptoms on inoculated seedlings. Seedlings inoculated with D. corticola died within 4 wk, with the pathogen progressing up and down through the xylem in advance of living phloem and moving throughout the taproot in 70% of inoculated seedlings. Colonization and re-isolation was successful for all species. All three fungal species represent newly recorded fungal pathogens of coast live oak in California. Results from the pathogenicity test suggest that these fungi play a role in the decline of coast live oaks throughout southern California.


Mycologia | 2016

Identification, pathogenicity and abundance of Paracremonium pembeum sp. nov. and Graphium euwallaceae sp. nov.—two newly discovered mycangial associates of the polyphagous shot hole borer (Euwallacea sp.) in California

Shannon Colleen Lynch; M. Twizeyimana; J. S. Mayorquin; D. H. Wang; Francis Na; Mukaddes Kayim; Matthew T. Kasson; Pham Quang Thu; Craig Bateman; Paul F. Rugman-Jones; Jiri Hulcr; Richard Stouthamer; Akif Eskalen

Fusarium euwallaceae is a well-characterized fungal symbiont of the exotic ambrosia beetle Euwallacea sp. (polyphagous shot hole borer [PSHB]), together inciting Fusarium dieback on many host plants in Israel and California. Recent discoveries of additional fungal symbionts within ambrosia beetle mycangia suggest these fungi occur as communities. Colony-forming units of Graphium euwallaceae sp. nov. and Paracremonium pembeum sp. nov., two novel fungal associates of PSHB from California, grew from 36 macerated female heads and 36 gallery walls collected from Platanus racemosa, Acer negundo, Persea americana and Ricinus communis. Fungi were identified based on micromorphology and phylogenetic analyses of the combined internal transcribed spacer region (nuc rDNA ITS1-5.8S-ITS2 [ITS barcode]), elongation factor (EF 1-α), small subunit (18S rDNA) sequences for Graphium spp., ITS, EF 1-α, calmodulin (cmdA), large subunit of the ATP citrate lyase (acl1), β-tubulin (tub2), RNA polymerase II second largest subunit (rpb2) and large subunit (28S rDNA) sequences for Paracremonium spp. Other Graphium spp. recovered from PSHB in Vietnam, Euwallacea fornicatus in Thailand, E. validus in Pennsylvania and Paracremonium sp. recovered from PSHB in Vietnam were identified. F. euwallaceae was recovered from mycangia at higher frequencies and abundances in all hosts except R. communis, in which those of F. euwallaceae and P. pembeum were equal. P. pembeum was relatively more abundant within gallery walls of A. negundo and R. communis. In all hosts combined F. euwallaceae was relatively more abundant within PSHB heads than gallery walls. All three fungi grew at different rates and colonized inoculated excised stems of P. americana and A. negundo. P. pembeum produced longer lesions than F. euwallaceae and G. euwallaceae on inoculated avocado shoots. Results indicate PSHB is associated with a dynamic assemblage of mycangial fungal associates that pose additional risk to native and nonnative hosts in California.


Plant Disease | 2014

First Report of Geosmithia pallida Causing Foamy Bark Canker, a New Disease on Coast Live Oak (Quercus agrifolia), in Association with Pseudopityophthorus pubipennis in California

S. C. Lynch; D. H. Wang; J. S. Mayorquin; Paul F. Rugman-Jones; Richard Stouthamer; Akif Eskalen

Declining coast live oak (Quercus agrifolia) trees have been observed since 2012 throughout urban landscapes in Los Angeles, Orange, Riverside, Santa Barbara, Ventura, and Monterey counties in California. Symptoms causing branch dieback and tree death included a cinnamon-colored gum seeping through multiple 0.95-mm-diameter entry holes on the bole, followed by a prolific, cream-colored foamy liquid. Beneath the outer bark was phloem and xylem necrosis. Fifty 1- to 2.5-mm adult and larval beetles were collected. Adults fit the morphological description of Pseudopityophthorus pubipennis (western oak bark beetle) (R. Rabaglia, personal communication), and ~800 bp of the mitochondrial COI gene was amplified for three beetles using primer pairs and methods previously described (2,3). All three sequences were identical (GenBank Accession Nos. KJ831289 to 91) and a BLAST search confirmed the closest match (94%) as P. pubipennis. Necrotic wood tissues collected from two trees in each county were cultured on potato dextrose agar amended with 0.01% tetracycline (PDA-tet), and incubated at 25°C for 1 week. Ochre-colored cultures with plane or radially furrowed velutinous mycelium were consistently produced. Fifty conidia each measured from two isolates were 3.66 ± 0.04 μm × 1.77 ± 0.03 μm, and arranged in non-persistent conidial chains, at first roughly parallel, becoming tangled with age. These fungal colonies were observed within gallery walls. The rDNA internal transcribed spacer (ITS) was amplified using primer pairs and methods previously described (5). Three isolates were sequenced and matched 100% to known sequences of Geosmithia pallida in GenBank; sequences of two isolates (UCR2208 and UCR2210) were deposited in GenBank (KJ468687 and KJ468688). Pathogenicity tests were performed by inoculating twelve 27.0-cm detached coast live oak shoots for each isolate with a spore suspension of G. pallida (UCR2208 and UCR2210) and sterile distilled water for controls. A 2-mm-wide, 3-mm-deep hole was drilled into the center of each shoot, 20 μl of a 106 conidia/ml spore suspension was pipetted into the hole, and sealed with Vaseline and Parafilm. The experiment was repeated twice. After 4 weeks in a moist chamber at 25°C, lesions produced by G. pallida averaged 8.3 cm and was significantly longer (ANOVA; P < 0.0001) from the control (average 0.4 cm). G. pallida was re-isolated from all inoculated plants and identified by colony morphology. P. pubipennis is a native beetle, common as a secondary agent, and previously not associated with disease. However, cryptic species may be common among bark and ambrosia beetles (4). A larger sample (i.e., populations and loci) is needed to determine the precise taxonomic status of P. pubipennis. G. pallida was shown to inhibit root growth of Q. petraea by 25% in Europe (1), appears to have affinities with a range of subcorticolous insects, and is widely distributed (5), but there is no published record of the fungus occurring in the United States. This is the first report of G. pallida causing foamy bark canker in association with P. pubipennis on Q. agrifolia in California. Results suggest this new disease complex is causing decline of Q. agrifolia throughout the state. References: (1) D. Cizková et al. Folia Microbiol. 50:59, 2005. (2) A. I. Cognato and F. A. H. Sperling. Mol. Phylogenet. Evol. 14:445, 2000. (3) A. I. Cognato et al. Mol. Phylogenet. Evol. 36:494, 2006. (4) B. H. Jordal and M. Kambestad. Mol. Ecol. Res. 14:7, 2014. (5) M. Kolarík et al. Mycol. Res. 108:1053, 2004.


Plant Disease | 2013

Identification of New Fungal Pathogens of Coast Live Oak in California

S. C. Lynch; Paul J. Zambino; J. S. Mayorquin; D. H. Wang; Akif Eskalen

A decline of coast live oak (Quercus agrifolia) has been observed throughout southern California. In this study, the identity and pathogenicity of non-Botryosphaeriaceae fungal species consistently recovered from necrotic tissues of branch and bleeding trunk canker samples from these locations were assessed. Species were identified morphologically and by comparison of the complete sequence of the internal transcribed spacer (ITS) of the ribosomal DNA to sequences available in GenBank. Phylogenetic analyses were then conducted using ITS and partial sequences of the β-tubulin and mitochondrial small ribosomal subunit genes for unknown species. Fungi recovered and identified included Fusarium solani, Phaeoacremonium mortoniae, Diatrypella verrucaeformis, and a fungus described herein as Cryptosporiopsis querciphila sp. nov. One-year-old coast live oak seedlings were wound inoculated under controlled conditions to test pathogenicity of the fungal species. Each fungal species was successfully reisolated from necrotic tissue at 70 and 100% for P. mortoniae and all other species, and xylem necrosis was significantly different between all treatments and controls (P < 0.0001 at α = 0.05). Isolates of F. solani were the most aggressive tested. These species represent new records of fungal pathogens of coast live oak in California. Results from the pathogenicity test suggest that these fungi play a role in the decline of southern California coast live oak trees.


Plant Disease | 2013

Effect of Fungicide Application on the Management of Avocado Branch Canker (Formerly Dothiorella Canker) in California

M. Twizeyimana; V. T. McDonald; J. S. Mayorquin; D. H. Wang; Francis Na; D. S. Akgül; Akif Eskalen

Members of the Botryosphaeriaceae family have been associated with branch cankers of avocado trees (Persea americana) in California. Canker infections are initiated by spores entering the host plant through fresh wounds such as pruning wounds. With high-density planting becoming more common in the California avocado industry, more intensive pruning may increase the occurrence of branch canker. The objective of this study was to evaluate the preventive ability of some commercial fungicides belonging to different chemical families against fungal pathogens associated with avocado branch canker. Initially, 12 fungicides were tested in vitro for their effect on the inhibition of mycelial growth of three isolates of Dothiorella iberica and isolates (five per species) of Neofusicoccum australe, N. luteum, N. parvum, and Phomopsis sp. Subsequently, azoxystrobin, fludioxonil, metconazole, and pyraclostrobin, selected because of their low effective concentrations that reduce 50% of mycelial growth (EC50 values), and myclobutanil, selected for its high EC50 value, were tested in two field experiments. Azoxystrobin and fludioxonil were used in a premix with propiconazole and cyprodinil, respectively, in field trials. Significant differences (P < 0.05) were observed among fungicides in field trials. Azoxystrobin + propiconazole had the highest percent inhibition at 52 and 62% (internal lesion length) in trial 1 and trial 2, respectively, although this level of inhibition was not significantly different from that of metconazole. A significant correlation (r = 0.51, P < 0.05) was observed between internal lesion length data in the field experiment and EC50 data from in vitro fungicide screening. Application of azoxystrobin + propiconazole and metconazole can play a key role in protecting Californian avocado against fungi causing avocado branch canker.


Plant Disease | 2017

Two novel fungal symbionts Fusarium kuroshium sp. nov. and Graphium kuroshium sp. nov. of Kuroshio shot hole borer (Euwallacea sp. nr. fornicatus) cause Fusarium dieback on woody host species in California

Francis Na; Joseph Daniel Carrillo; J. S. Mayorquin; Cedric Ndinga-Muniania; Jason E. Stajich; Richard Stouthamer; Yin-Tse Huang; Yu-Ting Lin; Chi Yu Chen; Akif Eskalen

Shot hole borer (SHB)-Fusarium dieback (FD) is a new pest-disease complex affecting numerous tree species in California and is vectored by two distinct, but related ambrosia beetles (Euwallacea sp. nr. fornicatus) called polyphagous shot hole borer (PSHB) and Kuroshio shot hole borer (KSHB). These pest-disease complexes cause branch dieback and tree mortality on numerous wildland and landscape tree species, as well as agricultural tree species, primarily avocado. The recent discovery of KSHB in California initiated an investigation of fungal symbionts associated with the KSHB vector. Ten isolates of Fusarium sp. and Graphium sp., respectively, were recovered from the mycangia of adult KSHB females captured in three different locations within San Diego County and compared with the known symbiotic fungi of PSHB. Multigene phylogenetic analyses of the internal transcribed spacer region (ITS), translation elongation factor-1 alpha (TEF1-α), and RNA polymerase II subunit (RPB1, RPB2) regions as well as morphological comparisons revealed that two novel fungal associates Fusarium kuroshium sp. nov. and Graphium kuroshium sp. nov. obtained from KSHB were related to, but distinct from the fungal symbionts F. euwallaceae and G. euwallaceae associated with PSHB in California. Pathogenicity tests on healthy, young avocado plants revealed F. kuroshium and G. kuroshium to be pathogenic. Lesion lengths from inoculation of F. kuroshium were found to be significantly shorter compared with those caused by F. euwallaceae, while no difference in symptom severity was detected between Graphium spp. associated with KSHB and PSHB. These findings highlight the pest disease complexes of KSHB-FD and PSHB-FD as distinct, but collective threats adversely impacting woody hosts throughout California.


Journal of Economic Entomology | 2017

Evaluations of Insecticides and Fungicides for Reducing Attack Rates of a new invasive ambrosia beetle (Euwallacea Sp., Coleoptera: Curculionidae: Scolytinae) in Infested Landscape Trees in California

Michele Eatough Jones; John N. Kabashima; Akif Eskalen; Monica Dimson; J. S. Mayorquin; Joseph Daniel Carrillo; Christopher C. Hanlon; Timothy D. Paine

Abstract A recently discovered ambrosia beetle with the proposed common name of polyphagous shot hole borer (Euwallacea sp., Coleoptera: Curculionidae: Scolytinae), is reported to attack >200 host tree species in southern California, including many important native and urban landscape trees. This invasive beetle, along with its associated fungi, causes branch dieback and tree mortality in a large variety of tree species including sycamore (Platanus racemosa Nutt.). Due to the severity of the impact of this Euwallacea sp., short-term management tools must include chemical control options for the arboriculture industry and private landowners to protect trees. We examined the effectiveness of insecticides, fungicides, and insecticide–fungicide combinations for controlling continued Euwallacea sp. attacks on previously infested sycamore trees which were monitored for 6 mo after treatment. Pesticide combinations were generally more effective than single pesticide treatments. The combination of a systemic insecticide (emamectin benzoate), a contact insecticide (bifenthrin), and a fungicide (metconazole) provided some level of control when applied on moderate and heavily infested trees. The biological fungicide Bacillus subtilis provided short-term control. There was no difference in the performance of the three triazole fungicides (propiconazole, tebuconazole, and metconazole) included in this study. Although no pesticide combination provided substantial control over time, pesticide treatments may be more effective when trees are treated during early stages of attack by this ambrosia beetle.


Plant Disease | 2014

Identification of Species of Botryosphaeriaceae Causing Bot Gummosis in Citrus in California

A. O. Adesemoye; J. S. Mayorquin; D. H. Wang; M. Twizeyimana; S. C. Lynch; Akif Eskalen


Plant Disease | 2016

Identification, Distribution, and Pathogenicity of Diatrypaceae and Botryosphaeriaceae Associated with Citrus Branch Canker in the Southern California Desert

J. S. Mayorquin; D. H. Wang; M. Twizeyimana; Akif Eskalen

Collaboration


Dive into the J. S. Mayorquin's collaboration.

Top Co-Authors

Avatar

Akif Eskalen

University of California

View shared research outputs
Top Co-Authors

Avatar

D. H. Wang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francis Na

University of California

View shared research outputs
Top Co-Authors

Avatar

S. C. Lynch

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul J. Zambino

United States Department of Agriculture

View shared research outputs
Researchain Logo
Decentralizing Knowledge