J.S. Osorio
South Dakota State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J.S. Osorio.
Journal of Dairy Science | 2013
J.S. Osorio; P. Ji; J.K. Drackley; D. Luchini; Juan J. Loor
The onset of lactation in dairy cows is characterized by severe negative energy and protein balance. Methionine availability during this time for milk production, hepatic lipid metabolism, and immune function may be limiting. Supplementing Met to peripartal diets with adequate Lys in metabolizable protein (MP) to fine-tune the Lys:Met ratio may be beneficial. Fifty-six multiparous Holstein cows were fed the same basal diet from 50 d before expected calving to 30 d in milk. From -50 to -21 d before expected calving, all cows received the same diet [1.24 Mcal/kg of dry matter (DM), 10.3% rumen-degradable protein, and 4% rumen-undegradable protein] with no Met supplementation. From -21 d to expected calving, the cows received diets (1.54 Mcal/kg of DM, 10% rumen-degradable protein, and 5.1% rumen-undegradable protein) with no added Met (control, CON; n=14), CON plus MetaSmart (MS; Adisseo Inc., Antony, France; n=12), or CON plus Smartamine M (SM; Adisseo Inc.; n=12). From calving through 30 d in milk, the cows received the same postpartum diet (1.75 Mcal/kg of DM and 17.5% CP; CON), or the CON plus MS or CON plus SM. The Met supplements were adjusted daily and top-dressed over the total mixed ration at a rate of 0.19 or 0.07% (DM) of feed for MS or SM. Liver tissue was collected on -10, 7, and 21 d, and blood samples more frequently, from -21 through 21 d. Data were analyzed using the MIXED procedure of SAS (SAS Institute Inc., Cary, NC) with the preplanned contrasts CON versus SM + MS and SM versus MS. No differences in prepartal DM intake (DMI) or body condition score were observed. After calving, body condition score was lower (2.6 vs. 2.8), whereas DMI was greater (15.4 vs. 13.3 kg/d) for Met-supplemented cows. Postpartal diet × time interactions were observed for milk fat percentage, milk fat yield, energy-corrected milk:DMI ratio, and energy balance. These were mainly due to changes among time points across all treatments. Cows supplemented with either Met source increased milk yield, milk protein percentage, energy-corrected milk, and milk fat yield by 3.4 kg/d, 0.18% units, 3.9 kg/d, and 0.18 kg/d, respectively. Those responses were associated with greater postpartum concentration of growth hormone but not insulin-like growth factor 1. There was a diet × time effect for nonesterified fatty acid concentration due to greater values on d 7 for MS; however, liver concentration of triacylglycerol was not affected by diet or diet × time but increased postpartum. Blood neutrophil phagocytosis at 21 d was greater with Met supplementation, suggesting better immune function. Supplemental MS or SM resulted in a tendency for lower incidence of ketosis postpartum. Although supplemental MS or SM did not decrease liver triacylglycerol, it improved milk production-related traits by enhancing voluntary DMI.
Journal of Dairy Science | 2012
P. Ji; J.S. Osorio; J.K. Drackley; Juan J. Loor
Mechanisms regulating subcutaneous adipose tissue (SAT) insulin sensitivity and gene network expression during the peripartal period were evaluated in cows fed to meet or exceed prepartal energy requirements. Holstein cows were dried off at -50 d relative to expected parturition and fed a controlled-energy diet [CON; net energy for lactation=1.24 Mcal/kg of dry matter (DM); 36% of DM as wheat straw] until -21 d. Cows were then randomly assigned (n=7/diet) to either the same CON diet or a moderate-energy close-up diet (OVE; net energy for lactation=1.47 Mcal/kg of DM) until parturition. Biopsies of SAT were harvested at -10, 7, and 21 d for mRNA expression of 48 genes associated with insulin signaling, adipogenesis, and lipolysis. In vitro basal and insulin-stimulated insulin receptor substrate 1 tyrosine phosphorylation (IRS1-PY) was assessed at -10 and 7 d. The OVE led to more positive energy balance and greater serum insulin concentration prepartum. Compared with CON, OVE led to a more drastic increase in serum NEFA and also greater overall serum BHBA postcalving, both of which were associated with greater hepatic total lipid and triacylglycerol concentration. Close-up OVE did not improve any aspect of performance. In prepartal SAT, insulin-stimulated IRS1-PY was greater in OVE than in CON. However, IRS1-PY, serum insulin, and GLUT4 expression decreased postpartum regardless of prepartal treatment, suggesting a more severe state of insulin resistance. The expression of all genes encoding adipogenic regulators (PPARG and ZFP423), most lipogenic enzymes/inducers (FASN, SCD, DGAT2, and INSIG1), and basal-lipolysis regulators (ATGL and ABDH5) was greater at -10 d in OVE than in CON. Whereas adipogenic and basal lipolysis regulator expression remained greater in cows fed OVE by 7 d postpartum, expression of all lipogenic enzymes decreased regardless of diet. Despite those responses, the approximately 3-fold increase in expression of IRS1 and ZFP423 between 7 and 21 d suggested that insulin responsiveness and adipogenic capacity of SAT were partially restored. Expression of the preadipocyte marker DLK1, adiponutrin (PNPLA3), and fibroblast growth factor 21 (FGF21) was undetectable. Results suggested that close-up energy overfeeding did not exacerbate insulin resistance in SAT. Signs of restored insulin responsiveness (upregulation of IRS1, INSIG2, SREBF1, and ZFP423) were apparent as early as 3 wk postpartum. Thus, identifying specific nutrients capable of activating PPARγ after calving in AT might help accelerate its replenishment. A regulatory network encompassing the genes and physiological measurements obtained is proposed.
Journal of Dairy Science | 2014
J.S. Osorio; Erminio Trevisi; P. Ji; J.K. Drackley; D. Luchini; Giuseppe Bertoni; Juan J. Loor
The peripartal dairy cow experiences a state of reduced liver function coupled with increased inflammation and oxidative stress. This study evaluated the effect of supplementing basal diets with rumen-protected Met in the form of MetaSmart (MS) or Smartamine M (SM) (both from Adisseo Inc., Antony, France) during the peripartal period on blood and hepatic biomarkers of liver function, inflammation, and oxidative stress. Thirty-seven multiparous Holstein cows were fed the same basal diet from -50 to -21 d relative to expected calving [1.24 Mcal/kg of dry matter (DM); no Met supplementation]. From -21 d to calving, the cows received diets (1.54 Mcal/kg of DM) with no added Met (control, CON; n=13), CON plus MS (n=11), or CON plus SM (n=13). From calving through 30 d in milk (DIM), the cows received the same postpartal diet (1.75 Mcal/kg of DM; CON), or CON plus MS or CON plus SM. Liver and blood samples were harvested at various time points from -21 to 21 d relative to calving. Preplanned contrasts of CON versus SM + MS during prepartum (-21 and -10 d before calving) and postpartum (7, 14, and 21 d after calving) responses were evaluated. Cows fed MS or SM compared with CON had lower overall concentrations of plasma ceruloplasmin and serum amyloid A (SAA). Compared with CON, Met-supplemented cows had greater overall plasma oxygen radical absorbance capacity. Liver concentrations of glutathione and carnitine also were greater overall with Met supplementation. Milk choline and liver phosphatidylcholine were lower overall in cows fed Met compared with controls. Liver tissue choline concentrations did not differ. Data indicate that supplemental Met enhanced de novo glutathione and carnitine synthesis in liver and, thus, increased antioxidant and β-oxidation capacity. The greater decrease of IL-6 after calving coupled with lower ceruloplasmin and SAA in Met-supplemented cows indicated a reduction in proinflammatory signaling within liver. The lower hepatic phosphatidylcholine in Met-supplemented cows might have been associated with greater assembly or export of very low density lipoproteins. Overall, biomarker analyses in blood and tissue indicate that the beneficial effect of feeding SM and MS on postpartal cow performance is due in part to a better immunometabolic status.
Journal of Dairy Science | 2014
J.S. Osorio; P. Ji; J.K. Drackley; D. Luchini; Juan J. Loor
Peripartal cows likely require greater amounts of Met not only at the tissue and cell level for methylation reactions but also for milk protein synthesis after calving. Thirty-nine Holstein cows were fed throughout the peripartal period (-21 d to 30 d in milk) a basal control (CON) diet (n=14) with no Met supplementation, CON plus MetaSmart (MS; Adisseo Inc., Antony, France; n=12), or CON plus Smartamine M (SM; Adisseo Inc.; n=13). The Met supplements were adjusted daily and top-dressed over the total mixed ration at a rate of 0.19 or 0.07% (dry matter) of feed for MS or SM. Liver tissue was collected on -10, 7, and 21 d for transcriptome profiling of genes associated with Met and glutathione metabolism as well as components of the inflammation, oxidative stress, growth hormone/insulin-like growth factor-1 axis, and DNA methylation pathways. Data were analyzed using PROC MIXED of SAS (SAS Institute Inc., Cary, NC) with the preplanned contrasts CON versus SM + MS and SM versus MS. The S-adenosylhomocysteine hydrolase (SAHH) gene was the most abundant among all genes evaluated, with overall greater expression in Met-supplemented cows than CON, and in SM than MS. Expression of Met adenosyltransferase 1A (MAT1A) was greater in Met-supplemented cows than CON by 21 d postpartum. A greater overall expression of 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR) occurred in Met-supplemented cows than CON. In contrast, the expression of glutathione synthase (GSS); glutamate-cysteine ligase, catalytic subunit (GCLC); and superoxide dismutase 1, cytosolic (SOD1) was lower in Met-supplemented cows than CON. A greater overall expression of nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NFKB1) and greater upregulation of haptoglobin (HP) on d 7 occurred in Met-supplemented cows than CON. Expression of DNA cytosine-5-methyltransferase 3 alpha (DNMT3A) was greater but expression of DNMT1 was lower in Met-supplemented cows than CON. The response observed in SAHH reflects its importance to Met supplementation during the peripartum period. Despite greater HP expression after calving, the lower expression of glutathione (GSS and GCLC) metabolism genes and SOD1 due to Met reflect a lower oxidative stress and mild inflammatory status. The extent to which changes in expression of DNMT3A and DNMT1 result in epigenetic effects partly responsible for the previously observed enhanced performance in Met-supplemented cows remains to be examined. Increasing the supply of Met as SM or MS can affect expression of genes in the Met cycle to various extents and, hence, the supply of methyl donors such as S-adenosylmethionine and antioxidants such as glutathione. These compounds likely are in high demand during the peripartum period.
Journal of Dairy Science | 2015
Carolina Bespalhok Jacometo; J.S. Osorio; Michael T. Socha; Marcio Nunes Corrêa; F. Piccioli-Cappelli; Erminio Trevisi; Juan J. Loor
Organic trace mineral (ORG) supplementation to dairy cows in substitution of sulfate (INO) sources has been associated with improvement in immune function during stressful states such as the peripartal period. However, the effect of supplemental ORG during pregnancy on the neonatal calf is unknown. Therefore, our aim was to investigate the effects of ORG supplementation during late pregnancy on the immune system and growth of the neonatal calf. Of specific interest was the evaluation of inflammation-related microRNA (miRNA) and target gene expression in blood neutrophils as indicators of possible nutritional programming. Forty multiparous cows were supplemented for 30d prepartum with 40 mg/kg of Zn, 20 mg/kg of Mn, 5 mg/kg of Cu, and 1mg/kg of Co from either organic (ORG) or sulfate (INO) sources (total diet contained supplemental 75 mg/kg of Zn, 65 mg/kg of Mn, 11 mg/kg of Cu, and 1 mg/kg of Co, and additional Zn, Mn, and Co provided by sulfates), and a subset of calves (n=8/treatment) was used for blood immunometabolic marker and polymorphonuclear leukocyte (PMNL) gene and miRNA expression analyses. Samples were collected at birth (before colostrum feeding), 1d (24 h after colostrum intake), and 7 and 21d of age. Data were analyzed as a factorial design with the PROC MIXED procedure of SAS. No differences were detected in BW, but maternal ORG tended to increase calf withers height. Calves from INO-fed cows had greater concentrations of blood glucose, GOT, paraoxonase, myeloperoxidase, and reactive oxygen metabolites. Antioxidant capacity also was greater in INO calves. The PMNL expression of toll-like receptor pathway genes indicated a pro-inflammatory state in INO calves, with greater expression of the inflammatory mediators MYD88, IRAK1, TRAF6, NFKB, and NFKBIA. The lower expression of miR-155 and miR-125b in ORG calves indicated the potential for maternal organic trace minerals in regulating the PMNL inflammatory response at least via alterations in mRNA and miRNA expression. Overall, these results indicate that maternal nutrition with organic trace minerals could alter the neonatal innate immune response at least in part via changes in gene and miRNA expression. Further studies involving inflammatory challenges during the neonatal period should be performed to determine the functional benefit of maternal organic trace minerals on the neonatal immune response.
Journal of Dairy Science | 2013
J.S. Osorio; Erminio Trevisi; M.A. Ballou; Giuseppe Bertoni; J.K. Drackley; Juan J. Loor
A conventional approach in dairy cow nutrition programs during late gestation is to feed moderate-energy diets. The effects of the maternal plane of nutrition on immune function and metabolism in newborn calves are largely unknown. Holstein cows (n=20) were fed a controlled-energy (CON) diet (1.24 Mcal/kg) for the entire dry period (~50 d) or the CON diet during the first 29 d of the dry period followed by a moderate-energy (OVE) diet (1.47 Mcal/kg) during the last 21 d prepartum. All calves were weighed at birth before first colostrum intake. Calves chosen for this study (n=6 per maternal diet) had blood samples harvested before colostrum feeding (d 0) and at 2 and 7 d of age. Blood samples were used to determine metabolites, acute-phase proteins, oxidative stress markers, hormones, phagocytic capacity of polymorphonuclear leukocytes (PMN) and monocytes, and total RNA was isolated from PMN. Calves from OVE dams weighed, on average, 5kg less at birth (44.0 vs. 48.6kg) than calves from CON dams. Blood glucose concentration in OVE calves had a more pronounced increase between 0 and 2 d than CON, at which point phagocytosis by PMN averaged 85% in OVE and 62% in CON. Compared with CON, calves from OVE had greater expression of TLR4, but lower expression of PPARA and PPARD at birth. Expression of PPARG and RXRA decreased between 0 and 2 d in both groups. Concentrations of leptin, cholesterol, ceruloplasmin, reactive oxygen metabolites, myeloperoxidase, retinol, tocopherol, IgG, and total protein, as well as expression of SOD2 and SELL increased markedly by 2 d in both groups; whereas, cortisol, albumin, acid-soluble protein, NEFA, insulin, as well as expression of IL6, TLR4, IL1R2, LTC4S, and ALOX5 decreased by 2 d. By 7 d of age, the concentration of haptoglobin was greater than precolostrum and was lower for OVE than CON calves. Our data provide evidence for a carry-over effect of maternal energy overfeeding during the last 3 wk before calving on some measurements of metabolism in the calf at birth and the phagocytic capacity of blood neutrophils after colostrum feeding. It might be feasible to design nutrient supplements to fortify colostrum in a way that metabolic and immunologic capabilities of the calf are improved.
Physiological Genomics | 2016
J.S. Osorio; Jayant Lohakare; Massimo Bionaz
The demand for high-quality milk is increasing worldwide. The efficiency of milk synthesis can be improved by taking advantage of the accumulated knowledge of the transcriptional and posttranscriptional regulation of genes coding for proteins involved in the synthesis of fat, protein, and lactose in the mammary gland. Research in this area is relatively new, but data accumulated in the last 10 years provide a relatively clear picture. Milk fat synthesis appears to be regulated, at least in bovines, by an interactive network between SREBP1, PPARγ, and LXRα, with a potential role for other transcription factors, such as Spot14, ChREBP, and Sp1. Milk protein synthesis is highly regulated by insulin, amino acids, and amino acid transporters via transcriptional and posttranscriptional routes, with the insulin-mTOR pathway playing a central role. The transcriptional regulation of lactose synthesis is still poorly understood, but it is clear that glucose transporters play an important role. They can also cooperatively interact with amino acid transporters and the mTOR pathway. Recent data indicate the possibility of nutrigenomic interventions to increase milk fat synthesis by feeding long-chain fatty acids and milk protein synthesis by feeding amino acids. We propose a transcriptional network model to account for all available findings. This model encompasses a complex network of proteins that control milk synthesis with a cross talk between milk fat, protein, and lactose regulation, with mTOR functioning as a central hub.
Journal of Dairy Science | 2016
J.S. Osorio; Carolina Bespalhok Jacometo; Z. Zhou; D. Luchini; F.C. Cardoso; Juan J. Loor
The availability of Met in metabolizable protein (MP) of a wide range of diets for dairy cows is low. During late pregnancy and early lactation, in particular, suboptimal Met in MP limits its use for mammary and liver metabolism and also for the synthesis of S-adenosylmethionine, which is essential for many biological processes, including DNA methylation. The latter is an epigenetic modification involved in the regulation of gene expression, hence, tissue function. Thirty-nine Holstein cows were fed throughout the peripartal period (-21 d to 30 d in milk) a basal control (CON) diet (n=14) with no Met supplementation, CON plus MetaSmart (MS; Adisseo NA, Alpharetta, GA; n=12), or CON plus Smartamine M (SM; Adisseo NA; n=13). The total mixed ration dry matter for the close-up and lactation diets was measured weekly, then the Met supplements were adjusted daily and top-dressed over the total mixed ration at a rate of 0.19 (MS) or 0.07% (SM) on a dry matter basis. Liver tissue was collected on -10, 7, and 21 d for global DNA and peroxisome proliferator-activated receptor alpha (PPARα) promoter region-specific methylation. Several PPARα target and putative target genes associated with carnitine synthesis and uptake, fatty acid metabolism, hepatokines, and carbohydrate metabolism were also studied. Data were analyzed using PROC MIXED of SAS (SAS Institute Inc., Cary, NC) with the preplanned contrast CON versus SM + MS. Global hepatic DNA methylation on d 21 postpartum was lower in Met-supplemented cows than CON. However, of 2 primers used encompassing 4 to 12 CpG sites in the promoter region of bovine PPARA, greater methylation occurred in the region encompassing -1,538 to -1,418 from the transcription start site in cows supplemented with Met. Overall expression of PPARA was greater in Met-supplemented cows than CON. Concomitantly, PPARA-target genes, such as ANGPTL4, FGF21, and PCK1, were also upregulated overall by Met supplementation. The upregulation of PPARα target genes indicates that supplemental Met, likely through the synthesis of S-adenosylmethionine, activated PPARA-regulated signaling pathways. Upregulation of hepatic PPARA has been associated with improved lipid metabolism and immune function, both of which were reported in companion publications from this study. In turn, those positive effects resulted in improved postpartal health and performance. Further research is needed to study more closely the mechanistic connections between global DNA and promoter region-specific PPARA methylation with PPARA expression and functional outcomes in liver.
Journal of Dairy Science | 2012
J.S. Osorio; Brandon C. Fraser; Daniel E. Graugnard; S.S. Singh; J.K. Drackley; E.F. Garrett; Juan J. Loor
Objectives were to (1) determine the feasibility of performing hoof biopsies without impairing locomotion; (2) evaluate the feasibility of using biopsied tissue for quantitative PCR; and (3) compare relative gene expression among claws for several target genes. Biopsies were performed on 6 Holstein cows, yielding 4 tissue specimens per cow from front leg, right limb, and medial claw (claw position 3); rear leg, left limb, and lateral claw (claw position 5); and rear leg, right limb, medial claw (claw position 7). Cows were monitored for lameness daily for 7 d post-biopsy and then weekly for 8 wk. Histopathological analysis confirmed that tissue collected was from between the stratum corneum and dermis. Biopsied tissue was used for RNA extraction, including evaluation of yield and purity. The profile by claw position of 19 genes with key functions in cell differentiation, proliferation, inflammation, and keratin formation was assessed via quantitative reverse transcription-PCR. Other than transient disturbances in locomotion score in some cows during 2 to 4 d post-biopsy, no signs of pain, locomotion impairment, or clinical lameness were observed post-biopsy. Total RNA yields averaged 259.7±100, 447.8±288, and 496.4±118 μg/mg of tissue for claw positions 3, 5, and 7, respectively. The biopsy procedure was successful for obtaining corium for gene expression. Among 5 keratin proteins analyzed, only keratin 5 was expressed. Transcripts related to inflammation and oxidative stress (STAT3, MYD88, SOD2, and TLR4) were among the more abundant in corium tissue, but expression did not differ between claws. Biotinidase (BTD) expression was greater in claw 3 versus claw 5, whereas the ligand-activated nuclear receptor retinoic acid receptor-α (RXRA) was greater in claws 3 + 5 compared with claw 7. Overall, results from this pilot study revealed modest differences at the transcriptome level, suggesting that biotin availability and lipid metabolism differ between claw positions, whereas inflammation and oxidative stress seem to play an important role across claws. More comprehensive studies of the hoof transcriptome are required to improve our understanding of the mechanisms that link environmental and dietary factors to development of lameness.
PLOS ONE | 2016
Fernanda Batistel; J.S. Osorio; Annarita Ferrari; Erminio Trevisi; Michael T. Socha; Juan J. Loor
The peripartum (or transition) period is the most-critical phase in the productive life of lactating dairy cows and optimal supply of trace minerals through more bioavailable forms could minimize the negative effects associated with this phase. Twenty Holstein cows received a common prepartal diet and postpartal diet. Both diets were partially supplemented with an inorganic (INO) mix of Zn, Mn, and Cu to supply 35, 45, and 6 ppm, respectively, of the diet dry matter (DM). Cows were assigned to treatments in a randomized completed block design, receiving an daily oral bolus with INO or organic trace minerals (AAC) Zn, Mn, Cu, and Co to achieve 75, 65, 11, and 1 ppm supplemental, respectively, in the diet DM. Liver tissue and blood samples were collected throughout the experiment. The lower glutamic-oxaloacetic transaminase concentration after 15 days in milk in AAC cows indicate lower hepatic cell damage. The concentration of cholesterol and albumin increased, while IL-6 decreased over time in AAC cows compared with INO indicating a lower degree of inflammation and better liver function. Although the acute-phase protein ceruloplasmin tended to be lower in AAC cows and corresponded with the reduction in the inflammatory status, the tendency for greater serum amyloid A concentration in AAC indicated an inconsistent response on acute-phase proteins. Oxygen radical absorbance capacity increased over time in AAC cows. Furthermore, the concentrations of nitric oxide, nitrite, nitrate, and the ferric reducing ability of plasma decreased with AAC indicating a lower oxidative stress status. The expression of IL10 and ALB in liver tissue was greater overall in AAC cows reinforcing the anti-inflammatory response detected in plasma. The greater overall expression of PCK1 in AAC cows indicated a greater gluconeogenic capacity, and partly explained the greater milk production response over time. Overall, feeding organic trace minerals as complexed with amino acids during the transition period improved liver function and decreased inflammation and oxidative stress.