J. Scott Bunch
University of Colorado Boulder
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. Scott Bunch.
Nano Letters | 2008
J. Scott Bunch; Scott S. Verbridge; Jonathan S. Alden; Arend van der Zande; J. M. Parpia; Harold G. Craighead; Paul L. McEuen
We demonstrate that a monolayer graphene membrane is impermeable to standard gases including helium. By applying a pressure difference across the membrane, we measure both the elastic constants and the mass of a single layer of graphene. This pressurized graphene membrane is the worlds thinnest balloon and provides a unique separation barrier between 2 distinct regions that is only one atom thick.
Nature Nanotechnology | 2011
Steven P. Koenig; Narasimha G. Boddeti; Martin L. Dunn; J. Scott Bunch
As mechanical structures enter the nanoscale regime, the influence of van der Waals forces increases. Graphene is attractive for nanomechanical systems because its Youngs modulus and strength are both intrinsically high, but the mechanical behaviour of graphene is also strongly influenced by the van der Waals force. For example, this force clamps graphene samples to substrates, and also holds together the individual graphene sheets in multilayer samples. Here we use a pressurized blister test to directly measure the adhesion energy of graphene sheets with a silicon oxide substrate. We find an adhesion energy of 0.45±0.02 J m(-2) for monolayer graphene and 0.31±0.03 J m(-2) for samples containing two to five graphene sheets. These values are larger than the adhesion energies measured in typical micromechanical structures and are comparable to solid-liquid adhesion energies. We attribute this to the extreme flexibility of graphene, which allows it to conform to the topography of even the smoothest substrates, thus making its interaction with the substrate more liquid-like than solid-like.
Nature Nanotechnology | 2012
Steven P. Koenig; Luda Wang; John Pellegrino; J. Scott Bunch
Membranes act as selective barriers and play an important role in processes such as cellular compartmentalization and industrial-scale chemical and gas purification. The ideal membrane should be as thin as possible to maximize flux, mechanically robust to prevent fracture, and have well-defined pore sizes to increase selectivity. Graphene is an excellent starting point for developing size-selective membranes because of its atomic thickness, high mechanical strength, relative inertness and impermeability to all standard gases. However, pores that can exclude larger molecules but allow smaller molecules to pass through would have to be introduced into the material. Here, we show that ultraviolet-induced oxidative etching can create pores in micrometre-sized graphene membranes, and the resulting membranes can be used as molecular sieves. A pressurized blister test and mechanical resonance are used to measure the transport of a range of gases (H(2), CO(2), Ar, N(2), CH(4) and SF(6)) through the pores. The experimentally measured leak rate, separation factors and Raman spectrum agree well with models based on effusion through a small number of ångstrom-sized pores.
Nano Letters | 2016
David Lloyd; Xinghui Liu; Jason Christopher; Lauren Cantley; Anubhav Wadehra; Brian L. Kim; Bennett B. Goldberg; Anna K. Swan; J. Scott Bunch
We demonstrate the continuous and reversible tuning of the optical band gap of suspended monolayer MoS2 membranes by as much as 500 meV by applying very large biaxial strains. By using chemical vapor deposition (CVD) to grow crystals that are highly impermeable to gas, we are able to apply a pressure difference across suspended membranes to induce biaxial strains. We observe the effect of strain on the energy and intensity of the peaks in the photoluminescence (PL) spectrum and find a linear tuning rate of the optical band gap of 99 meV/%. This method is then used to study the PL spectra of bilayer and trilayer devices under strain and to find the shift rates and Grüneisen parameters of two Raman modes in monolayer MoS2. Finally, we use this result to show that we can apply biaxial strains as large as 5.6% across micron-sized areas and report evidence for the strain tuning of higher level optical transitions.
Nano Letters | 2012
Luda Wang; Jonathan J. Travis; Andrew S. Cavanagh; Xinghui Liu; Steven P. Koenig; Pinshane Y. Huang; Steven M. George; J. Scott Bunch
In this paper, a method is presented to create and characterize mechanically robust, free-standing, ultrathin, oxide films with controlled, nanometer-scale thickness using atomic layer deposition (ALD) on graphene. Aluminum oxide films were deposited onto suspended graphene membranes using ALD. Subsequent etching of the graphene left pure aluminum oxide films only a few atoms in thickness. A pressurized blister test was used to determine that these ultrathin films have a Youngs modulus of 154 ± 13 GPa. This Youngs modulus is comparable to much thicker alumina ALD films. This behavior indicates that these ultrathin two-dimensional films have excellent mechanical integrity. The films are also impermeable to standard gases suggesting they are pinhole-free. These continuous ultrathin films are expected to enable new applications in fields such as thin film coatings, membranes, and flexible electronics.
Journal of Applied Mechanics | 2013
Narasimha G. Boddeti; Steven P. Koenig; Rong Long; Jianliang Xiao; J. Scott Bunch; Martin L. Dunn
We study the mechanics of pressurized graphene membranes using an experimental configuration that allows the determination of the elasticity of graphene and the adhesion energy between a substrate and a graphene (or other two-dimensional solid) membrane. The test consists of a monolayer graphene membrane adhered to a substrate by surface forces. The substrate is patterned with etched microcavities of a prescribed volume and when they are covered with the graphene monolayer it traps a fixed number (N) of gas molecules in the microchamber. By lowering the ambient pressure, and thus changing the pressure difference across the graphene membrane, the membrane can be made to bulge and delaminate in a stable manner from the substrate. Here we describe the analysis of the membrane/substrate as a thermodynamic system and explore the behavior of the system over representative experimentally-accessible geometry and loading parameters. We carry out companion experiments and compare them to the theoretical predictions and then use the theory and experiments together to determine the adhesion energy of graphene/SiO2 interfaces. We find an average adhesion energy of 0.24 J/m2 which is lower, but in line with our previously reported values. We assert that this test, which we call the constant N blister test, is a valuable approach to determine the adhesion energy between two-dimensional solid membranes and a substrate, which is an important, but not well-understood aspect of behavior. The test also provides valuable information that can serve as the basis for subsequent research to understand the mechanisms contributing to the observed adhesion energy. Finally, we show how in the limit of a large microcavity, the constant N test approaches the behavior observed in a constant pressure blister test and we provide an experimental observation that suggests this behavior.
Nature Nanotechnology | 2015
Luda Wang; Lee W. Drahushuk; Lauren Cantley; Steven P. Koenig; Xinghui Liu; John Pellegrino; Michael S. Strano; J. Scott Bunch
An ability to precisely regulate the quantity and location of molecular flux is of value in applications such as nanoscale three-dimensional printing, catalysis and sensor design. Barrier materials containing pores with molecular dimensions have previously been used to manipulate molecular compositions in the gas phase, but have so far been unable to offer controlled gas transport through individual pores. Here, we show that gas flux through discrete ångström-sized pores in monolayer graphene can be detected and then controlled using nanometre-sized gold clusters, which are formed on the surface of the graphene and can migrate and partially block a pore. In samples without gold clusters, we observe stochastic switching of the magnitude of the gas permeance, which we attribute to molecular rearrangements of the pore. Our molecular valves could be used, for example, to develop unique approaches to molecular synthesis that are based on the controllable switching of a molecular gas flux, reminiscent of ion channels in biological cell membranes and solid-state nanopores.
Nano Letters | 2013
Narasimha G. Boddeti; Xinghui Liu; Rong Long; Jianliang Xiao; J. Scott Bunch; Martin L. Dunn
We created graphene blisters that cover and seal an annular cylinder-shaped microcavity in a SiO2 substrate filled with a gas. By controlling the pressure difference between the gas inside and outside of the microcavity, we switch the graphene membrane between multiple stable equilibrium configurations. We carried out experiments starting from the situation where the pressure of the gas inside and outside of the microcavity is set equal to a prescribed charging pressure, p0 and the graphene membrane covers the cavity like an annular drum, adhered to the central post and the surrounding substrate due to van der Waals forces. We decrease the outside pressure to a value, pe which causes it to bulge into an annular blister. We systematically increase the charging pressure by repeating this procedure causing the annular blister to continue to bulge until a critical charging pressure pc(i) is reached. At this point the graphene membrane delaminates from the post in an unstable manner, resulting in a switch of graphene membrane shape from an annular to a spherical blister. Continued increase of the charging pressure results in the spherical blister growing with its height increasing, but maintaining a constant radius until a second critical charging pressure pc(o) is reached at which point the blister begins to delaminate from the periphery of the cavity in a stable manner. Here, we report a series of experiments as well as a mechanics and thermodynamic model that demonstrate how the interplay among system parameters (geometry, graphene stiffness (number of layers), pressure, and adhesion energy) results in the ability to controllably switch graphene blisters among different shapes. Arrays of these blisters can be envisioned to create pressure-switchable surface properties where the difference between patterns of annular versus spherical blisters will impact functionalities such as wettability, friction, adhesion, and surface wave characteristics.
Advanced Materials | 2014
Xinghui Liu; Ji Won Suk; Narasimha G. Boddeti; Lauren Cantley; Luda Wang; Jason M. Gray; Harris J. Hall; Victor M. Bright; Charles T. Rogers; Martin L. Dunn; Rodney S. Ruoff; J. Scott Bunch
Large arrays of 3-terminal nanoelectromechanical graphene switches are fabricated. The switch is designed with a novel geometry that leads to low actuation voltages and improved mechanical integrity, while reducing adhesion forces, which improves the reliability of the switch. A finite element model including non-linear electromechanics is used to simulate the switching behavior and to deduce a scaling relation between the switching voltage and device dimensions.
Nano Letters | 2013
Xinghui Liu; Narasimha G. Boddeti; Mariah Szpunar; Luda Wang; Miguel Rodriguez; Rong Long; Jianliang Xiao; Martin L. Dunn; J. Scott Bunch
We present a unique experimental configuration that allows us to determine the interfacial forces on nearly parallel plates made from the thinnest possible mechanical structures, single and few layer graphene membranes. Our approach consists of using a pressure difference across a graphene membrane to bring the membrane to within ~10-20 nm above a circular post covered with SiOx or Au until a critical point is reached whereby the membrane snaps into adhesive contact with the post. Continuous measurements of the deforming membrane with an AFM coupled with a theoretical model allow us to deduce the magnitude of the interfacial forces between graphene and SiOx and graphene and Au. The nature of the interfacial forces at ~10-20 nm separation is consistent with an inverse fourth power distance dependence, implying that the interfacial forces are dominated by van der Waals interactions. Furthermore, the strength of the interactions is found to increase linearly with the number of graphene layers. The experimental approach can be used to measure the strength of the interfacial forces for other atomically thin two-dimensional materials and help guide the development of nanomechanical devices such as switches, resonators, and sensors.