J. Teles
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. Teles.
Journal of Chemical Physics | 2007
J. Teles; Eduardo Ribeiro deAzevedo; R. Auccaise; R. S. Sarthour; I. S. Oliveira; T. J. Bonagamba
In this paper, we describe a quantum state tomography method based on global rotations of the spin system which, together with a coherence selection scheme, enables the complete density matrix reconstruction. The main advantage of this technique, in respect to previous proposals, is the use of much shorter rf pulses, which decreases significantly the time necessary for algorithm quantum state tomography. In this case, under adequate experimental conditions, the rf pulses correspond to simple spatial rotations of the spin states, and its analytical description is conveniently given in the irreducible tensor formalism. Simulated results show the feasibility of the method for a single spin 72 nucleus. As an experimental result, we exemplify the application of this method by tomographing the steps during the implementation of the Deutsch algorithm. The algorithm was implemented in a (23)Na quadrupole nucleus using the strongly modulated pulses technique. We also extended the tomography method for a 3-coupled homonuclear spin 12 system, where an additional evolution under the internal Hamiltonian is necessary for zero order coherences evaluation.
New Journal of Physics | 2008
Alexandre M. Souza; Alviclér Magalhães; J. Teles; Eduardo Ribeiro deAzevedo; T. J. Bonagamba; I. S. Oliveira; R. S. Sarthour
In this paper, we present an analog of Bells inequalities violation test for N qubits to be performed in a nuclear magnetic resonance (NMR) quantum computer. This can be used to simulate or predict the results for different Bells inequality tests, with distinct configurations and a larger number of qubits. To demonstrate our scheme, we implemented a simulation of the violation of the Clauser, Horne, Shimony and Holt (CHSH) inequality using a two-qubit NMR system and compared the results to those of a photon experiment. The experimental results are well described by the quantum mechanics theory and a local realistic hidden variables model (LRHVM) that was specifically developed for NMR. That is why we refer to this experiment as a simulation of Bells inequality violation. Our result shows explicitly how the two theories can be compatible with each other due to the detection loophole. In the last part of this work, we discuss the possibility of testing some fundamental features of quantum mechanics using NMR with highly polarized spins, where a strong discrepancy between quantum mechanics and hidden variables models can be expected.
Journal of Magnetic Resonance | 2008
R. Auccaise; J. Teles; R. S. Sarthour; T. J. Bonagamba; I. S. Oliveira; Eduardo Ribeiro deAzevedo
This article reports a relaxation study in an oriented system containing spin 3/2 nuclei using quantum state tomography (QST). The use of QST allowed evaluating the time evolution of all density matrix elements starting from several initial states. Using an appropriated treatment based on the Redfield theory, the relaxation rate of each density matrix element was measured and the reduced spectral densities that describe the system relaxation were determined. All the experimental data could be well described assuming pure quadrupolar relaxation and reduced spectral densities corresponding to a superposition of slow and fast motions. The data were also analyzed in the context of Quantum Information Processing, where the coherence loss of each qubit of the system was determined using the partial trace operation.
Journal of Chemical Physics | 2009
R. Auccaise; J. Teles; T. J. Bonagamba; I. S. Oliveira; Eduardo Ribeiro deAzevedo; R. S. Sarthour
This paper presents a description of nuclear magnetic resonance (NMR) of quadrupolar systems using the Holstein-Primakoff (HP) formalism and its analogy with a Bose-Einstein condensate (BEC) system. Two nuclear spin systems constituted of quadrupolar nuclei I=3/2 ((23)Na) and I=7/2 ((133)Cs) in lyotropic liquid crystals were used for experimental demonstrations. Specifically, we derived the conditions necessary for accomplishing the analogy, executed the proper experiments, and compared with quantum mechanical prediction for a Bose system. The NMR description in the HP representation could be applied in the future as a workbench for BEC-like systems, where the statistical properties may be obtained using the intermediate statistic, first established by Gentile. The description can be applied for any quadrupolar systems, including new developed solid-state NMR GaAS nanodevices.
International Journal of Quantum Information | 2012
Arthur G. Araujo-Ferreira; Carlos Alexandre Brasil; D. O. Soares-Pinto; Eduardo Ribeiro deAzevedo; T. J. Bonagamba; J. Teles
In this work, we present an implementation of quantum logic gates and algorithms in a three effective qubits system, represented by a (I = 7/2) NMR quadrupolar nuclei. To implement these protocols we have used the strong modulating pulses (SMP) and the various stages of each implementation were verified by quantum state tomography (QST). The results for the computational base states, Toffolli logic gates, and Deutsch–Jozsa and Grover algorithms are presented here. Also, we discuss the difficulties and advantages of implementing such protocols using the SMP technique in quadrupolar systems.
Journal of Physics D | 2004
J. Teles; C E Garrido; Alberto Tannús
In many areas of research that utilize magnetic fields in their studies, it is important to obtain fields with a spatial distribution as homogeneous as possible. A procedure usually utilized to evaluate and to optimize field homogeneity is the expansion of the measured field in spherical harmonic components. In addition to the methods proposed in the literature, we present a more convenient procedure for evaluation of field homogeneity inside a spherical volume. The procedure uses the orthogonality property of the spherical harmonics to find the field variance. It is shown that the total field variance is equal to the sum of the individual variances of each field component in the spherical harmonic expansion. Besides the advantages of the linear behaviour of the individual variances, there is the fact that the field variance and standard deviation are the best parameters to achieve global homogeneity field information.
Philosophical Transactions of the Royal Society A | 2012
J. Teles; Eduardo Ribeiro deAzevedo; Jair C. C. Freitas; R. S. Sarthour; I. S. Oliveira; T. J. Bonagamba
Nuclear magnetic resonance is viewed as an important technique for the implementation of many quantum information algorithms and protocols. Although the most straightforward approach is to use the two-level system composed of spin nuclei as qubits, quadrupolar nuclei, which possess a spin greater than , are being used as an alternative. In this study, we show some unique features of quadrupolar systems for quantum information processing, with an emphasis on the ability to execute efficient quantum state tomography (QST) using only global rotations of the spin system, whose performance is shown in detail. By preparing suitable states and implementing logical operations by numerically optimized pulses together with the QST method, we follow the stepwise execution of Grovers algorithm. We also review some work in the literature concerning the relaxation of pseudo-pure states in spin systems as well as its modelling in both the Redfield and Kraus formalisms. These data are used to discuss differences in the behaviour of the quantum correlations observed for two-qubit systems implemented by spin and quadrupolar spin systems, also presented in the literature. The possibilities and advantages of using nuclear quadrupole resonance experiments for quantum information processing are also discussed.
Journal of Magnetic Resonance | 2011
J.R. Tozoni; J. Teles; R. Auccaise; Rodrigo de Oliveira-Silva; Christian Rivera-Ascona; Edson L. G. Vidoto; A.P. Guimarães; I. S. Oliveira; T. J. Bonagamba
In this paper we present a series of high-resolution zero-field NMR spectra of the polycrystalline intermetallic compound GdAl(2). The spectra were obtained with the sample at 4.2K in the ordered magnetic state and in the absence of an external static magnetic field. Using a sequence composed of two RF pulses, we obtained up to five multi-quantum echoes for the (27)Al nuclei, which were used to construct the zero-field NMR spectra. The spectra obtained from the FID observed after the second pulse and the even echoes exhibited higher resolution than the odd ones. In order to explain such behavior, we propose a model in which there are two regions inside the sample with different inhomogeneous spectral-line broadenings. Moreover, with the enhanced resolution from the FID signal, we were able to determine quadrupolar couplings with great precision directly from the respective spectra. These results were compared with those obtained from the quadrupolar oscillations of the echo signals, and showed good agreement. Similar data were also obtained from (155)Gd and (157)Gd nuclei.
Quantum Information Processing | 2010
Andre Gavini-Viana; Alexandre M. Souza; D. O. Soares-Pinto; J. Teles; R. S. Sarthour; Eduardo Ribeiro deAzevedo; T. J. Bonagamba; I. S. Oliveira
NMR quantum information processing studies rely on the reconstruction of the density matrix representing the so-called pseudo-pure states (PPS). An initially pure part of a PPS state undergoes unitary and non-unitary (relaxation) transformations during a computation process, causing a “loss of purity” until the equilibrium is reached. Besides, upon relaxation, the nuclear polarization varies in time, a fact which must be taken into account when comparing density matrices at different instants. Attempting to use time-fixed normalization procedures when relaxation is present, leads to various anomalies on matrices populations. On this paper we propose a method which takes into account the time-dependence of the normalization factor. From a generic form for the deviation density matrix an expression for the relaxing initial pure state is deduced. The method is exemplified with an experiment of relaxation of the concurrence of a pseudo-entangled state, which exhibits the phenomenon of sudden death, and the relaxation of the Wigner function of a pseudo-cat state.
International Journal of Quantum Information | 2011
D. O. Soares-Pinto; J. Teles; Alexandre M. Souza; Eduardo Ribeiro deAzevedo; R. S. Sarthour; T. J. Bonagamba; M. S. Reis; I. S. Oliveira
In this paper, we use Nuclear Magnetic Resonance (NMR) to write electronic states of a ferromagnetic system into high-temperature paramagnetic nuclear spins. Through the control of phase and duration of radio frequency pulses, we set the NMR density matrix populations, and apply the technique of quantum state tomography to experimentally obtain the matrix elements of the system, from which we calculate the temperature dependence of magnetization for different magnetic fields. The effects of the variation of temperature and magnetic field over the populations can be mapped in the angles of spin rotations, carried out by the RF pulses. The experimental results are compared to the Brillouin functions of ferromagnetic ordered systems in the mean field approximation for two cases: the mean field is given by (i) B = B0 + λM and (ii) B = B0 + λM + λ′M3, where B0 is the external magnetic field, and λ, λ′ are mean field parameters. The first case exhibits second order transition, whereas the second case has first order transition with temperature hysteresis. The NMR simulations are in good agreement with the magnetic predictions.