Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Thomas Sanderson is active.

Publication


Featured researches published by J. Thomas Sanderson.


Journal of Agricultural and Food Chemistry | 2010

Growth inhibitory, antiandrogenic, and pro-apoptotic effects of punicic acid in LNCaP human prostate cancer cells.

Jihane Gasmi; J. Thomas Sanderson

Prostate cancer is a commonly diagnosed cancer in men, and dietary chemoprevention by pomegranate (Punica granatum) extracts has shown noticeable benefits. In this study, we investigated the growth inhibitory, antiandrogenic, and pro-apoptotic effects of 13 pure compounds found in the pomegranate in androgen-dependent LNCaP human prostate cancer cells. Cells deprived of steroid hormones were exposed to increasing concentrations (1-100 μM) of pomegranate compounds in the presence of 0.1 nM dihydrotestosterone (DHT), and the inhibition of cell growth was measured by WST-1 colorimetric assay after a 4 day exposure. Four compounds, epigallocatechin gallate (EGCG), delphinidin chloride, kaempferol, and punicic acid, were found to inhibit DHT-stimulated cell growth at concentrations of 10 μM and above. These four pomegranate compounds inhibited DHT-stimulated androgen receptor nuclear accumulation and the expression of the androgen receptor-dependent genes prostate specific antigen and steroid 5α-reductase type 1 at concentrations ≥10 μM. We determined the possible contribution of apoptosis to the observed decrease in cell growth and found that three compounds, EGCG, kaempferol, and, in particular, punicic acid, induced DNA fragmentation after a 24 h treatment, at concentrations in the 10-100 μM range. Punicic acid, an important fatty acid in pomegranate seeds, was further found to induce intrinsic apoptosis via a caspase-dependent pathway. In conclusion, punicic acid, the main constituent of pomegranate seed (70-80%), exhibited potent growth inhibitory activities in androgen-dependent LNCaP cells, which appear to be mediated by both antiandrogenic and pro-apoptotic mechanisms.


PeerJ | 2013

Bile acids induce apoptosis selectively in androgen-dependent and -independent prostate cancer cells

Alexander A. Goldberg; Vladimir I. Titorenko; Adam Beach; J. Thomas Sanderson

Prostate cancer is a prevalent age-related disease in North America, accounting for about 15% of all diagnosed cancers. We have previously identified lithocholic acid (LCA) as a potential chemotherapeutic compound that selectively kills neuroblastoma cells while sparing normal human neurons. Now, we report that LCA inhibits the proliferation of androgen-dependent (AD) LNCaP prostate cancer cells and that LCA is the most potent bile acid with respect to inducing apoptosis in LNCaP as well as androgen-independent (AI) PC-3 cells, without killing RWPE-1 immortalized normal prostate epithelial cells. In LNCaP and PC-3 cells, LCA triggered the extrinsic pathway of apoptosis and cell death induced by LCA was partially dependent on the activation of caspase-8 and -3. Moreover, LCA increased cleavage of Bid and Bax, down-regulation of Bcl-2, permeabilization of the mitochondrial outer membrane and activation of caspase-9. The cytotoxic actions of LCA occurred despite the inability of this bile acid to enter the prostate cancer cells with about 98% of the nominal test concentrations present in the extracellular culture medium. With our findings, we provide evidence to support a mechanism of action underlying the broad anticancer activity of LCA in various human tissues.


Bioorganic & Medicinal Chemistry | 2013

Antiproliferative, antiandrogenic and cytotoxic effects of novel caffeic acid derivatives in LNCaP human androgen-dependent prostate cancer cells.

J. Thomas Sanderson; Hélène Clabault; Cody Patton; Grégoire Lassalle-Claux; Jacques Jean-François; Aurélie F. Paré; Martin J. G. Hébert; Marc E. Surette; Mohamed Touaibia

Caffeic acid and its naturally occurring derivative caffeic acid phenethyl ester (CAPE) have antiproliferative and cytotoxic properties in a variety of cancer cell lines without displaying significant toxicity toward healthy cells, and are considered to be potential anticancer agents. However, little is known about their effects on prostate cancer cells. We synthesized and evaluated the effects of caffeic acid, CAPE (2) and 18 synthetic derivatives on cell viability and androgen-dependent cell proliferation, subcellular localisation and expression of androgen receptor (AR) and secretion of prostate-specific antigen (PSA) in LNCaP human hormone-dependent prostate cancer cells. Several synthetic derivatives of CAPE were strong, concentration-dependent cytotoxic agents in LNCaP cells with IC50 values in the 6.8-26.6 μM range, potencies that were up to five-fold greater than that of CAPE (33.7±4.0 μM). A number of caffeic acid derivatives were inhibitors of androgen-stimulated LNCaP cell proliferation with concomitant inhibition of DHT-stimulated PSA secretion. Compound 24 was the most cytotoxic and antiproliferative caffeic acid derivative (IC50 values of 6.8±0.3 and 2.4±0.8 μM, respectively) inhibiting DHT-stimulated cell proliferation and PSA secretion statistically significantly at concentrations as low as 0.3 μM. Exposure to DHT increased cytoplasmic and nuclear AR levels and co-treatment with increasing concentrations of compound 24 or CAPE (2), notably, further increased these levels. In conclusion, a number of synthetic derivatives of caffeic acid are potent inhibitors of androgen-dependent prostate cancer cell proliferation and viability, acting, at least in part, via an antiandrogenic mechanism that involves increased nuclear accumulation of (presumably inactive) AR.


The Prostate | 2011

Antiandrogenic and growth inhibitory effects of ring-substituted analogs of 3,3′-diindolylmethane (Ring-DIMs) in hormone-responsive LNCaP human prostate cancer cells

Khalil Abdelbaqi; Nathan A. Lack; Emma Tomlinson Guns; Leela Kotha; Stephen Safe; J. Thomas Sanderson

Cruciferous vegetables protect against prostate cancer. Indole‐3‐carbinol (I3C) and its major metabolite 3,3′‐diindolylmethane (DIM), exhibit antitumor activities in vitro and in vivo. Several synthetic ring‐substituted dihaloDIMs (ring‐DIMs) appear to have increased anticancer activity.


Environmental Health Perspectives | 2014

A unique co-culture model for fundamental and applied studies of human fetoplacental steroidogenesis and interference by environmental chemicals.

Andrée-Anne Hudon Thibeault; Kathy Deroy; Cathy Vaillancourt; J. Thomas Sanderson

Background: Experimental tools for studying the complex steroidogenic interactions that occur between placenta and fetus during human pregnancy are extremely limited. Objectives: We aimed to develop a co-culture model to study steroidogenesis by the human fetoplacental unit and its disruption by exposure to environmental contaminants. Methods: We cultured BeWo human choriocarcinoma cells, representing the villous cytotrophoblast, and H295R human adrenocortical carcinoma cells, representing the fetal unit, in a carefully adapted co-culture medium. We placed H295R cells in 24-well plates and BeWo cells on transwell inserts with or without pesticide treatment (atrazine or prochloraz) and assessed CYP19 activity and hormonal production after 24 hr of co-culture. Results: The co-culture exhibited the steroidogenic profile of the fetoplacental unit, allowing a synergistic production of estradiol and estriol (but not of estrone) of 133.3 ± 11.3 pg/mL and 440.8 ± 44.0 pg/mL, respectively. Atrazine and prochloraz had cell-type specific effects on CYP19 activity and estrogen production in co-culture. Atrazine induced CYP19 activity and estrogen production in H295R cells only, but did not affect overall estrogen production in co-culture, whereas prochloraz inhibited CYP19 activity exclusively in BeWo cells and reduced estrogen production in co-culture by almost 90%. In contrast, prochloraz did not affect estradiol or estrone production in BeWo cells in monoculture. These differential effects underline the relevance of our co-culture approach to model fetoplacental steroidogenesis. Conclusions: The co-culture of H295R and BeWo cells creates a unique in vitro model to reproduce the steroidogenic cooperation between fetus and placenta during pregnancy and can be used to study the endocrine-disrupting effects of environmental chemicals. Citation: Hudon Thibeault AA, Deroy K, Vaillancourt C, Sanderson JT. 2014. A unique co-culture model for fundamental and applied studies of human fetoplacental steroidogenesis and interference by environmental chemicals. Environ Health Perspect 122:371–377; http://dx.doi.org/10.1289/ehp.1307518


Methods of Molecular Biology | 2009

Placental and fetal steroidogenesis.

J. Thomas Sanderson

Steroid hormones are essential for maintenance of pregnancy and fetal development. The expression and catalytic activity of the key steroidogenic enzymes involved in the production of progesterone and estrogens increase during pregnancy, and there is an intricate communication between the mother, the placenta, and the fetus in order to maintain a balanced supply of the steroid hormones essential for embryogenesis. This chapter describes methods for the measurement of the expression and catalytic activity of three key cytochrome P450 (CYP) enzymes involved in the production of progesterone and estrogens, aromatase (CYP19), steroid 17-hydroxylase/17,20-lyase (CYP17), and cholesterol side-chain cleavage (CYP11A).


Toxicological Sciences | 2016

Effects of Neonicotinoids on Promoter-Specific Expression and Activity of Aromatase (CYP19) in Human Adrenocortical Carcinoma (H295R) and Primary Umbilical Vein Endothelial (HUVEC) Cells

Elyse Caron-Beaudoin; Michael S. Denison; J. Thomas Sanderson

The enzyme aromatase (CYP19; cytochrome P450 19) in humans undergoes highly tissue- and promoter-specific regulation. In hormone-dependent breast cancer, aromatase is over-expressed via several normally inactive promoters (PII, I.3, I.7). Aromatase biosynthesizes estrogens, which stimulate breast cancer cell proliferation. The placenta produces estrogens required for healthy pregnancy and the major placental CYP19 promoter is I.1. Exposure to certain pesticides, such as atrazine, is associated with increased CYP19 expression, but little is known about the effects of neonicotinoid insecticides on CYP19. We developed sensitive and robust RT-qPCR methods to detect the promoter-specific expression of CYP19 in human adrenocortical carcinoma (H295R) and primary umbilical vein endothelial (HUVEC) cells, and determined the potential promoter-specific disruption of CYP19 expression by atrazine and the commonly used neonicotinoids imidacloprid, thiacloprid, and thiamethoxam. In H295R cells, atrazine concentration-dependently increased PII- and I.3-mediated CYP19 expression and aromatase catalytic activity. Thiacloprid and thiamethoxam induced PII- and I.3-mediated CYP19 expression and aromatase activity at relatively low concentrations (0.1-1.0 µM), exhibiting non-monotonic concentration-response curves with a decline in gene induction and catalytic activity at higher concentrations. In HUVEC cells, atrazine slightly induced overall (promoter-indistinct) CYP19 expression (30 µM) and aromatase activity (≥ 3 µM), without increasing I.1 promoter activity. None of the neonicotinoids increased CYP19 expression or aromatase activity in HUVEC cells. Considering the importance of promoter-specific (over)expression of CYP19 in disease (breast cancer) or during sensitive developmental periods (pregnancy), our newly developed RT-qPCR methods will be helpful tools in assessing the risk that neonicotinoids and other chemicals may pose to exposed women.


Environmental Toxicology and Chemistry | 2005

Induction of ethoxy-resorufin-O-deethylase activity by halogenated aromatic hydrocarbons and polycyclic aromatic hydrocarbons in primary hepatocytes of the green frog (Rana esculenta)

Tanja Rouhani Rankouhi; Bas Koomen; J. Thomas Sanderson; A.T.C. Bosveld; Willem Seinen; Martin van den Berg

In this study, we measured the ethoxy-resorufin-O-deethylase (EROD) activity in primary hepatocytes of the common green frog Rana esculenta as a biomarker for cytochrome P4501A induction. We exposed hepatocytes derived from male and female frogs to several halogenated aromatic hydrocarbons, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 2,3,4,7,8-pentachlorodibenzofuran (PCDF), polychlorinated biphenyls (PCB-126, PCB-118), and polycyclic aromatic hydrocarbons such as benzo[a]pyrene (BaP), chrysene, anthracene, and pyrene. Exposure to PCB-118, anthracene, and pyrene, up to 1 microM, did not induce EROD activity, whereas TCDD and PCDF induced EROD activity maximally. In our primary frog hepatocytes, exposure to chrysene and BaP resulted in median effective concentration values (EC50) in the high nM range (82-1035 nM). Exposure to TCDD, PCDF, and PCB-126 resulted in EC50 values of 0.4 to 8, 0.07 to 0.7, and 3 to 133 nM, respectively, which is in the same range as EC50 values found in primary hepatocytes of birds. Compared to our frog hepatocytes, primary rat hepatocytes seem to be more sensitive to TCDD, chrysene, and BaP.


Toxicological Sciences | 2015

Antiandrogenic Mechanisms of Pesticides in Human LNCaP Prostate and H295R Adrenocortical Carcinoma Cells

Christina N. Robitaille; Patricia Rivest; J. Thomas Sanderson

Several pesticides suspected or known to have endocrine disrupting effects were screened for pro- or antiandrogenic properties by determining their effects on proliferation, prostatic-specific antigen (PSA) secretion and androgen receptor (AR) expression, and AR phosphorylation in androgen-dependent LNCaP human prostate cancer cells, as well as on the expression and catalytic activity of the enzyme CYP17 in H295R human adrenocortical carcinoma cells, an in vitro model of steroidogenesis. Effects on SRD5A gene expression were determined in both cell lines. Benomyl, vinclozolin, and prochloraz, but not atrazine, concentration dependently (1-30 μM) decreased dihydrotestosterone (DHT)-stimulated proliferation of LNCaP cells. All pesticides except atrazine decreased DHT-stimulated PSA secretion, AR nuclear accumulation, and AR phosphorylation on serines 81 and 213 in LNCaP cells. Benomyl and prochloraz, but not vinclozolin or atrazine, decreased levels of CYP17 gene and protein expression, as well as catalytic activity in H295R cells. In the case of prochloraz, some of these effects corresponded with cytotoxicity. H295R cells expressed AR protein and SRD5A1, but not SRD5A2 transcripts. SRD5A1 gene expression in H295R cells was increased by 10 nM DHT, whereas in LNCaP cells significant induction was observed by 0.1 nM DHT. AR protein expression in H295R cells was not increased by DHT. Vinclozolin decreased DHT-induced SRD5A1 gene expression in LNCaP, but not H295R cells, indicating a functional difference of AR between the cell lines. In conclusion, pesticides may exert antiandrogenic effects through several mechanisms that are cell type-specific, including AR antagonism and down-regulation or catalytic inhibition of androgen biosynthetic enzymes, such as CYP17 and SRD5A1.


Molecular and Cellular Endocrinology | 2017

Fluoxetine and its active metabolite norfluoxetine disrupt estrogen synthesis in a co-culture model of the feto-placental unit

Andrée-Anne Hudon Thibeault; Laetitia Laurent; Sung Vo Duy; Sébastien Sauvé; Patrick Caron; Chantal Guillemette; J. Thomas Sanderson; Cathy Vaillancourt

The effects of fluoxetine, one of the most prescribed selective serotonin-reuptake inhibitors (SSRIs) during pregnancy, and its active metabolite norfluoxetine were studied on placental aromatase (CYP19) and feto-placental steroidogenesis. Fluoxetine did not alter estrogen secretion in co-culture of fetal-like adrenocortical (H295R) and trophoblast-like (BeWo) cells used as a model of the feto-placental unit, although it induced CYP19 activity, apparently mediated by the serotonin (5-HT)2A receptor/PKC signaling pathway. Norfluoxetine decreased estrogen secretion in the feto-placental co-culture and competitively inhibited catalytic CYP19 activity in BeWo cells. Decreased serotonin transporter (SERT) activity in the co-culture was comparable to 17β-estradiol treatment of BeWo cells. This work shows that the complex interaction of fluoxetine and norfluoxetine with placental estrogen production, involves 5-HT-dependent and -independent mechanisms. Considering the crucial role of estrogens during pregnancy, our results raise concern about the impact of SSRI treatment on placental function and fetal health.

Collaboration


Dive into the J. Thomas Sanderson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cathy Vaillancourt

Institut national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

John P. Giesy

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

Hélène Clabault

Institut national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Alexander A. Goldberg

Institut national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Hossam Draz

Institut national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Andrée-Anne Hudon Thibeault

Université du Québec à Montréal

View shared research outputs
Top Co-Authors

Avatar

Laetitia Laurent

Institut national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge