J Thompson
University of Tasmania
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J Thompson.
Environmental Health Perspectives | 2013
Martha M. Monick; Jonas Baltrusaitis; Linda S. Powers; Jennifer Borcherding; Juan C. Caraballo; Imali A. Mudunkotuwa; David W. Peate; Katherine Walters; J Thompson; Vicki H. Grassian; Gunnar Gudmundsson; Alejandro P. Comellas
Background: On 20 March 2010, the Icelandic volcano Eyjafjallajökull erupted for the first time in 190 years. Despite many epidemiological reports showing effects of volcanic ash on the respiratory system, there are limited data evaluating cellular mechanisms involved in the response to ash. Epidemiological studies have observed an increase in respiratory infections in subjects and populations exposed to volcanic eruptions. Methods: We physicochemically characterized volcanic ash, finding various sizes of particles, as well as the presence of several transition metals, including iron. We examined the effect of Eyjafjallajökull ash on primary rat alveolar epithelial cells and human airway epithelial cells (20–100 µg/cm2), primary rat and human alveolar macrophages (5–20 µg/cm2), and Pseudomonas aeruginosa (PAO1) growth (3 µg/104 bacteria). Results: Volcanic ash had minimal effect on alveolar and airway epithelial cell integrity. In alveolar macrophages, volcanic ash disrupted pathogen-killing and inflammatory responses. In in vitro bacterial growth models, volcanic ash increased bacterial replication and decreased bacterial killing by antimicrobial peptides. Conclusions: These results provide potential biological plausibility for epidemiological data that show an association between air pollution exposure and the development of respiratory infections. These data suggest that volcanic ash exposure, while not seriously compromising lung cell function, may be able to impair innate immunity responses in exposed individuals.
Journal of Analytical Atomic Spectrometry | 2014
Daniel Tabersky; Norman A. Luechinger; Michael Rossier; Eric Reusser; Kathrin Hametner; Beat Aeschlimann; Daniel A. Frick; Samuel C. Halim; J Thompson; Leonid V. Danyushevsky; Detlef Günther
The flame spray technique was used to produce a nano-material with a customized composition. Liquid organic precursors of Si, Ca, Ti, Mg, Fe, and Al in a concentration similar to the matrix of the well-known NIST SRM 610 glass standard were mixed with a selection of rare earth elements (Ce, Gd, Ho, and Tb), precious metals (Ag, Au, Pd, Pt, Rh, and Ru) and Pb at concentrations of approx. 400–500 mg kg−1. The liquid precursor mixture was sprayed and collected as nanopowder, compacted to pellets and analyzed by solution and laser-ablation inductively coupled plasma mass spectrometry. The bulk composition of the material was determined in several aliquots of the powder, either 25 mg or 50 mg. Electron microprobe analyses were carried out to further characterize the major element composition of the pressed nano-material. The pellet was ablated using different laser ablation systems with an aim of assessing the micro-scale homogeneity of the produced material. The manufactured material is homogeneous for major elements and REEs similar to the NIST glass (<5% RSD). However, the distribution of the PGEs showed some larger spatial variation in the order of <7.5%. In addition it is shown that contamination during production leads to heterogeneous distribution of Pb and Ag. Based on the results achieved for Ru, Rh, Pd, Au, Pt, Mg, Ti, and Fe, which are either absent or not available in sufficient concentration levels in NIST glass, it is demonstrated that flame spray synthesis allows production of suitable customized matrix-matched calibration materials for micro-analytical techniques.
Journal of Analytical Atomic Spectrometry | 2016
J Thompson; S Meffre; Roland Maas; Vadim S. Kamenetsky; Maya B. Kamenetsky; K Goemann; Kathy Ehrig; Leonid V. Danyushevsky
U–Pb ages of several apatite reference materials, acquired by LA-ICP-MS over a 3.5 year period using the Otter Lake apatite as a primary standard, show systematic offsets (up to 3%) from reference ages obtained by isotope dilution mass spectrometry. The offsets are well outside known analytical errors from counting statistics, uncertainty in common Pb corrections or excess 206Pb in high-Th/U materials. The age offsets also do not correlate strongly with the concentrations of F, Cl, REE, Th and U, with accumulated radiation dose or with the depth of ablation pits. We suggest that the observed age offsets are related to elemental fractionation at the ablation site, but their direction and magnitude cannot at present be predicted from compositional differences in different apatite samples. Our results further suggest that Otter Lake apatite is too heterogeneous for use as a calibration standard. Two other apatite samples, OD306 (1596.7 ± 7.1 Ma) and the 401 apatite (530.3 ± 1.5 Ma) are introduced as potential U–Pb reference materials.
American Mineralogist | 2017
W Hong; David R. Cooke; L Zhang; N Fox; J Thompson
Abstract Distinctive magmatic-hydrothermal, tourmaline-rich features have developed in the Heemskirk and Pieman Heads granites from western Tasmania, Australia. They are categorized as tourmaline-rich patches, orbicules, cavities, and veins, based on their distinctive morphologies, sizes, mineral assemblages, and contact relationships with host granites. These textural features occur in discrete layers in the roof zone of granitic sills within the Heemskirk and Pieman Heads granites. Tourmaline patches commonly occur below a tourmaline orbicule-rich granitic sill. Tourmaline-filled cavities have typically developed above the tourmaline-quartz orbicules in the upper layer of the white phase of the Heemskirk Granite. Tourmaline-quartz veins penetrate all exposed levels of the granites, locally cutting tourmaline orbicules and cavities. The tourmalines are mostly schorl (Fe-rich) and foitite, with an average end-member component of schorl45 dravite6 tsilaisite1 uvite0 Fe-uvite3 foitite31 Mg-foitite4 olenite10. Element substitutions of the tourmalines are controlled by FeMg−1, YAlX□(R2+Na)−1, and minor YAlO(R2+OH)−1 (where R2+ = Fe2+ + Mg2+ + Mn2+) exchange vectors. Several trace elements in tourmaline have consistent chemical evolutions grouped from tourmaline patches, through orbicules and cavities, to veins. There is a progressive decrease of most transition and large ion lithophile elements, and a gradual increase of most high-field strength elements. These compositional variations in the different tourmaline-rich features probably relate to element partitioning occurring in these phases due to volatile exsolution and fluxing of aqueous boron-rich fluids that separated from the granitic melts during the emplacement of S-type magmas into the shallow crust (4 to 5.5 km). Tourmalines from the Heemskirk Granite are enriched in Fe, Na, Li, Be, Sn, Ta, Nb, Zr, Hf, Th, and rare earth elements relative to the tourmalines from the Pieman Heads Granite, but depleted in Mg, Mn, Sc, V, Co, Ni, Pb, Sr, and most transition elements. These results imply that bulk compositions of the host granites exert a major control on the chemical variations of tourmalines. The trace element compositions of tourmalines from the Sn-mineralized Heemskirk Granite are different from those of the barren Pieman Heads Granite. Trace element ratios (e.g., Zn/Nb, Co/Nb, Sr/Ta, and Co/La) and Sn concentrations in tourmaline can distinguish the productive Heemskirk Granite from the barren Pieman Heads Granite.
Journal of Analytical Atomic Spectrometry | 2017
Se Gilbert; P Olin; J Thompson; E Lounejeva; Leonid V. Danyushevsky
The production rates of polyatomic oxygen interferents (MO+/M+) during LA-ICP-MS analysis were investigated in a range of silicate materials and metals. The total amount of oxygen in the ICP is significantly lower for laser ablation analysis compared to solution nebulisation analysis resulting in lower oxide production rates. However, these interferents can still be significant for some elements. The contribution of oxygen from the material being ablated was found to influence the oxide production rate (OPR). When using a well degassed system to minimise the entrainment of atmospheric oxygen, the OPR for Al, Si and W was up to 4 times lower when ablating the elements as a metal compared to when ablating oxygen-bearing minerals. There is a relationship between the MO+/M+ production rate and the cation–oxygen dissociation energy for elements measured by solution and by laser ablation ICP-MS. However, for Hf and Th the OPR varied significantly depending on the mineral being ablated under the same analytical conditions (0.007–0.02% for Hf and 0.09–0.2% for Th), whereas UO+/U+ was more consistent (0.058–0.063%). The effects of carrier gas flow rate and resulting differences in aerosol breakdown and ionisation in the ICP were investigated for U and Th oxides in NIST610, NIST612, zircon (ZrSiO4), monazite ([REE,Th]PO4) and uraninite (UO2). Increasing the Ar flow rate had a larger effect on the Th OPR (0.05 to 0.5%) compared to U (0.04 to 0.09%) when ablating the NIST610 glass. The relative differences in the OPR between minerals compared to NIST610 were small for U, with all minerals having the same OPR except for uraninite at high carrier gas flow rates (35% higher). In contrast the OPR for Th was highly variable between all minerals and showed differing responses to changes in the Ar flow. This study highlights the complexities in oxide production for LA-ICP-MS compared to solution analyses, and that the OPR for some elements is strongly dependent on the material being ablated. Also, that there can be a significant contribution to the MO+ production from ionisation of an incompletely atomised sample aerosol in the plasma.
Australian Journal of Earth Sciences | 2016
Rf Berry; J Thompson; S Meffre; K Goemann
ABSTRACT The Timor Orogen represents one of the youngest arc–continent collisions exposed on the Earth. It has the potential to provide some of the key parameters about how this style of orogeny evolves. However, the metamorphic age of the highest-grade rocks formed in the collision remains controversial. Using U–Th–Pb dating of monazite from amphibolite-grade sillimanite and garnet-bearing schists we show the peak metamorphism occurred at 5.5–4.7 Ma. The young age of the monazite and the presence of significant amounts of common Pb required the development of a new protocol to simultaneously account for the 230Th disequilibrium and the 207Pb common Pb correction. The new estimate of metamorphic age is consistent with the estimates based on plate reconstructions for the initiation of arc–continent collision in East Timor. The metamorphic event is a result of this collision.
Journal of Analytical Atomic Spectrometry | 2018
J Thompson; S Meffre; Leonid V. Danyushevsky
The accuracy of zircon U–Pb dating by LA-ICPMS is limited by matrix effects related to differences in U–Pb fractionation between an unknown and the calibration standard. Zircon radiation dose has a strong influence on the ablation rate, which in turn affects the amount of U–Pb fractionation and subsequent age calculations. Presented in this study is a previously unrecognized source of uncertainty in LA-ICPMS U–Pb ages due to variations of atmospheric air absorbed onto the surfaces of samples. Laser properties such as fluence (J cm−2) will change the laser ablation rate, and therefore the degree of U–Pb fractionation, and this can change the amount of zircon matrix effect. To improve the accuracy of U–Pb dating by LA-ICPMS, a systematic error component related to radiation dose needs to be included, or alternatively a correction to U–Pb dates can be applied as a function of radiation dose relative to the primary calibration standard. This study proposes a method to calculate a correction factor for the zircon matrix effect by measurement of several zircon reference materials with varying radiation dosages.
Australian Journal of Earth Sciences | 2015
F. L. Sutherland; P. C. Piilonen; Khin Zaw; S Meffre; J Thompson
Subordinate sapphire accompanies prevalent zircon megacrysts in the Bo Loei basaltic gem field, Ratanakiri Province, Cambodia. These deposits are important for heat-treated gem zircon. Dark blue sapphire, with rare blue-green, orange-brown and yellow stones, up to a few cm in size, include hexagonal-shaped and growth-zoned crystals. Analyses of the sapphires (electron microprobe and laser ablation-inductively coupled plasma-mass spectrometry) showed Fe as the main chromophore (0.6–2.7 wt%), with minor Ti (<0.7 wt%). Sapphire cores show enrichment in Fe relative to rims and some include exotic heavy elements (Nb up to 56, Ta up to 144, Sn up to 5 ppm). The sapphires show high Ga values (271–724 ppm) and Ga/Mg ratios (4.8–77.0) suggesting magmatic associations. Two sapphires with syngenetic inclusions (zircon, Nb-rich rutile) gave U–Pb (Th-disequilibrium corrected) ages at ca 0.93 ± 0.1 Ma. The Bo Loei sapphires show higher Fe and Ga than other magmatic sapphire suites elsewhere in Cambodia (Pailin), Laos (Ban Huai Sai, Ban Sam Sai), South Vietnam (Dak Nong, Dak Lac) and SE Thailand (Chanthaburi-Trat). This suggests potential for geographic typing of sapphire suites between these different fields.
Australian Journal of Earth Sciences | 2018
Alexander R. Cherry; Vadim S. Kamenetsky; Jocelyn McPhie; J Thompson; Kathy Ehrig; S Meffre; Maya B. Kamenetsky; Sasha Krneta
ABSTRACT The Olympic iron oxide–copper–gold province in South Australia contains numerous deposits and prospects, including the Olympic Dam Cu–U–Au–Ag deposit and the Acropolis prospect. The Acropolis prospect comprises massive, coarse-grained magnetite–apatite veins partly replaced by a hematite-stable assemblage. The apatite grains in the veins contain zones with abundant inclusions of other minerals (including monazite and xenotime) and low trace-element concentrations relative to the inclusion-free zones. The inclusion-rich apatite zones are interpreted to be formed from the recrystallisation of the inclusion-free apatite and remobilisation of U, Th and rare earth element (REE) from apatite into monazite and xenotime. Apatite, monazite and xenotime are all established U–Th–Pb geochronometers and offer the potential to constrain the alteration history of the Acropolis prospect. The LA-ICPMS U–Pb age of inclusion-free apatite is within error of the age of the host volcanic units (ca 1.59 Ga). Inclusion-rich apatite yields both near-concordant analyses that are within error of the inclusion-free apatite as well as highly disturbed (discordant) analyses. The most concordant analyses of monazite (Th–Pb) inclusions and xenotime (U–Pb) inclusions and rim grains indicate an alteration event occurred at ca 1.37 Ga and possibly also at ca 500 Ma. The disparity in age of the inclusion-rich apatite and the REE-phosphate inclusions (and rim grains) is suggested to be owing to the apatite being initially recrystallised at ca 1.59 Ga and modified again by a later event that also formed (or coarsened) most of the inclusions. Partial resetting of the majority of the monazite inclusions as well as the presence of significant amounts of common Pb has complicated the interpretation of the monazite results. In contrast, xenotime is a more robust geochronometer in this setting. The ages of the two post-1.59 Ga events that appear to have affected the Acropolis prospect do not correspond to any events known to have occurred in the Gawler Craton. The earlier (ca 1.37 Ga) age instead corresponds best with metamorphic–magmatic–hydrothermal activity in Laurentia, consistent with the proximity of Laurentia and the Gawler Craton inferred from palaeogeographic reconstructions. The later (ca 500 Ma) event corresponds to the Delamerian Orogeny and has been shown by prior studies to have also affected the Olympic Dam deposit.
Precambrian Research | 2014
Ja Halpin; Torsten Jensen; Pj McGoldrick; S Meffre; Rf Berry; Jl Everard; Clive R. Calver; J Thompson; K Goemann; Joanne M. Whittaker