Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Verstappen is active.

Publication


Featured researches published by J. Verstappen.


The Astrophysical Journal | 2012

The Herschel Reference Survey: dust in early-type galaxies and across the Hubble Sequence

Matthew William L. Smith; Haley Louise Gomez; Stephen Anthony Eales; L. Ciesla; A. Boselli; Luca Cortese; G. J. Bendo; M. Baes; S. Bianchi; M. Clemens; D. L. Clements; A. Cooray; Jonathan Ivor Davies; I. De Looze; S. di Serego Alighieri; J. Fritz; G. Gavazzi; Walter Kieran Gear; S. Madden; Erin Mentuch; P. Panuzzo; Michael Pohlen; L. Spinoglio; J. Verstappen; C. Vlahakis; C. D. Wilson; E. M. Xilouris

We present Herschel observations of 62 early-type galaxies (ETGs), including 39 galaxies morphologically classified as S0+S0a and 23 galaxies classified as ellipticals using SPIRE at 250, 350, and 500 mu m as part of the volume-limited Herschel Reference Survey (HRS). We detect dust emission in 24% of the ellipticals and 62% of the S0s. The mean temperature of the dust is \textless T-d \textgreater = 23.9 +/- 0.8 K, warmer than that found for late-type galaxies in the Virgo Cluster. The mean dust mass for the entire detected early-type sample is log M-d = 6.1 +/- 0.1 M-circle dot with a mean dust-to-stellar-mass ratio of log(M-d/M-*) = -4.3 +/- 0.1. Including the non-detections, these parameters are log M-d = 5.6 +/- 0.1 and log(M-d/M-*) = -5.1 +/- 0.1, respectively. The average dust-to-stellar-mass ratio for the early-type sample is fifty times lower, with larger dispersion, than the spiral galaxies observed as part of the HRS, and there is an order-of-magnitude decline in M-d/M-* between the S0s and ellipticals. We use UV and optical photometry to show that virtually all the galaxies lie close to the red sequence yet the large number of detections of cool dust, the gas-to-dust ratios, and the ratios of far-infrared to radio emission all suggest that many ETGs contain a cool interstellar medium similar to that in late-type galaxies. We show that the sizes of the dust sources in S0s are much smaller than those in early-type spirals and the decrease in the dust-to-stellar-mass ratio from early-type spirals to S0s cannot simply be explained by an increase in the bulge-to-disk ratio. These results suggest that the disks in S0s contain much less dust (and presumably gas) than the disks of early-type spirals and this cannot be explained simply by current environmental effects, such as ram-pressure stripping. The wide range in the dust-to-stellar-mass ratio for ETGs and the lack of a correlation between dust mass and optical luminosity suggest that much of the dust in the ETGs detected by Herschel has been acquired as the result of interactions, although we show these are unlikely to have had a major effect on the stellar masses of the ETGs. The Herschel observations tentatively suggest that in the most massive systems, the mass of interstellar medium is unconnected to the evolution of the stellar populations in these galaxies.


The Astrophysical Journal | 2012

THE HERSCHEL EXPLOITATION OF LOCAL GALAXY ANDROMEDA (HELGA). II. DUST AND GAS IN ANDROMEDA

Matthew William L. Smith; Stephen Anthony Eales; Haley Louise Gomez; Julia Roman-Duval; J. Fritz; R. Braun; M. Baes; G. J. Bendo; J. A. D. L. Blommaert; M. Boquien; A. Boselli; D. L. Clements; A. Cooray; Luca Cortese; I. De Looze; G.P. Ford; Walter Kieran Gear; Gianfranco Gentile; Karl D. Gordon; Jason M. Kirk; V. Lebouteiller; S. Madden; E. Mentuch; B. O’Halloran; Mat Page; B. Schulz; L. Spinoglio; J. Verstappen; C. D. Wilson; David Allan Thilker

We present an analysis of the dust and gas in Andromeda, using Herschel images sampling the entire far-infrared peak. We fit a modified-blackbody model to similar to 4000 quasi-independent pixels with spatial resolution of similar to 140 pc and find that a variable dust-emissivity index (beta) is required to fit the data. We find no significant long-wavelength excess above this model, suggesting there is no cold dust component. We show that the gas-to-dust ratio varies radially, increasing from similar to 20 in the center to similar to 70 in the star-forming ring at 10 kpc, consistent with the metallicity gradient. In the 10 kpc ring the average beta is similar to 1.9, in good agreement with values determined for the Milky Way (MW). However, in contrast to the MW, we find significant radial variations in beta, which increases from 1.9 at 10 kpc to similar to 2.5 at a radius of 3.1 kpc and then decreases to 1.7 in the center. The dust temperature is fairly constant in the 10 kpc ring (ranging from 17 to 20 K), but increases strongly in the bulge to similar to 30 K. Within 3.1 kpc we find the dust temperature is highly correlated with the 3.6 mu m flux, suggesting the general stellar population in the bulge is the dominant source of dust heating there. At larger radii, there is a weak correlation between the star formation rate and dust temperature. We find no evidence for “dark gas” in M31 in contrast to recent results for the MW. Finally, we obtained an estimate of the CO X-factor by minimizing the dispersion in the gas-to-dust ratio, obtaining a value of (1.9 +/- 0.4) x 10(20) cm(-2) [K km s(-1)](-1).


Astrophysical Journal Supplement Series | 2011

EFFICIENT THREE-DIMENSIONAL NLTE DUST RADIATIVE TRANSFER WITH SKIRT

M. Baes; J. Verstappen; Ilse De Looze; J. Fritz; Waad Saftly; Edgardo Andrés Vidal Pérez; Marko Stalevski; Sander Valcke

We present an updated version of SKIRT, a three-dimensional (3D) Monte Carlo radiative transfer code developed to simulate dusty galaxies. The main novel characteristics of the SKIRT code are the use of a stellar foam to generate random positions, an efficient combination of eternal forced scattering and continuous absorption, and a new library approach that links the radiative transfer code to the DustEM dust emission library. This approach enables a fast, accurate, and self-consistent calculation of the dust emission of arbitrary mixtures of transiently heated dust grains and polycyclic aromatic hydrocarbons, even for full 3D models containing millions of dust cells. We have demonstrated the accuracy of the SKIRT code through a set of simulations based on the edge-on spiral galaxy UGC 4754. The models we ran were gradually refined from a smooth, two-dimensional, local thermal equilibrium (LTE) model to a fully 3D model that includes non-LTE (NLTE) dust emission and a clumpy structure of the dusty interstellar medium. We find that clumpy models absorb UV and optical radiation less efficiently than smooth models with the same amount of dust, and that the dust in clumpy models is on average both cooler and less luminous. Our simulations demonstrate that, given the appropriate use of optimization techniques, it is possible to efficiently and accurately run Monte Carlo radiative transfer simulations of arbitrary 3D structures of several million dust cells, including a full calculation of the NLTE emission by arbitrary dust mixtures.


Astronomy and Astrophysics | 2010

The Herschel Virgo Cluster Survey - II. Truncated dust disks in H I-deficient spirals

Luca Cortese; Jonathan Ivor Davies; Michael Pohlen; M. Baes; G. J. Bendo; S. Bianchi; A. Boselli; I. De Looze; J. Fritz; J. Verstappen; D. J. Bomans; M. Clemens; Edvige Corbelli; Aliakbar Dariush; S. di Serego Alighieri; D. Fadda; D. A. Garcia-Appadoo; G. Gavazzi; C. Giovanardi; M. Grossi; T. M. Hughes; L. K. Hunt; Andrew Jones; S. Madden; D. Pierini; S. Sabatini; Matthew William L. Smith; C. Vlahakis; E. M. Xilouris; Stefano Zibetti

By combining Herschel-SPIRE observations obtained as part of the Herschel Virgo Cluster Survey with 21 cm Hi data from the literature, we investigate the role of the cluster environment on the dust content of Virgo spiral galaxies. We show for the first time that the extent of the dust disk is significantly reduced in Hi-deficient galaxies, following remarkably well the observed “truncation” of the Hi disk. The ratio of the submillimetre-to-optical diameter correlates with the Hi-deficiency, suggesting that the cluster environment is able to strip dust as well as gas. These results provide important insights not only into the evolution of cluster galaxies but also into the metal enrichment of the intra-cluster medium.


Monthly Notices of the Royal Astronomical Society | 2012

The Herschel Virgo Cluster Survey – VIII. The Bright Galaxy Sample★

Jonathan Ivor Davies; S. Bianchi; Luca Cortese; Robbie Richard Auld; M. Baes; G. J. Bendo; A. Boselli; Laure Ciesla; M. Clemens; Edvige Corbelli; I. De Looze; S. di Serego Alighieri; J. Fritz; G. Gavazzi; C. Pappalardo; M. Grossi; L. K. Hunt; S. Madden; L. Magrini; Michael Pohlen; Matthew William L. Smith; J. Verstappen; C. Vlahakis

We describe the Herschel Virgo Cluster Survey and the first data that cover the complete survey area (four 4 x 4 deg2 regions). We use these data to measure and compare the global far-infrared properties of 78 optically bright galaxies that are selected at 500 mu m and detected in all five far-infrared bands. We show that our measurements and calibration are broadly consistent with previous data obtained by the IRAS, ISO, Spitzer and Planck. We use SPIRE and PACS photometry data to produce 100-, 160-, 250-, 350- and 500-mu m cluster luminosity distributions. These luminosity distributions are not power laws, but peaked, with small numbers of both faint and bright galaxies. We measure a cluster 100500 mu m far-infrared luminosity density of 1.6(7.0) +/- 0.2 x 10(9) L Mpc(-3). This compares to a cluster 0.42.5 mu m optical luminosity density of 5.0(20.0) x 10(9) L Mpc(-3), some 3.2(2.9) times larger than the far-infrared. A typical photon originates from an optical depth of 0.4 +/- 0.1. Most of our sample galaxies are well fitted by a single modified blackbody (beta= 2), leading to a mean dust mass of log M-Dust= 7.31 M and temperature of 20.0 K. We also derive both stellar and atomic hydrogen masses from which we calculate mean values for the star-to-gas (atomic) and gas (atomic)-to-dust mass ratios of 15.1 and 58.2, respectively. Using our derived dust, atomic gas and stellar masses, we estimate cluster mass densities of 8.6(27.8) x 106, 4.6(13.9) x 108 and 7.8(29.7) x 109 M Mpc-3 for dust, atomic gas and stars, respectively. These values are higher than those derived for field galaxies by factors of 39(126), 6(18) and 34(129), respectively. In the above, the luminosity/mass densities are given using the whole sample with the values in brackets using just those galaxies that lie between 17 and 23 Mpc. We provide a data table of flux densities in all the Herschel bands for all 78 bright Virgo Cluster galaxies.


The Astrophysical Journal | 2015

A Stubbornly Large Mass of Cold Dust in the Ejecta of Supernova 1987A

Mikako Matsuura; E. Dwek; Michael J. Barlow; B. L. Babler; M. Baes; Margaret M. Meixner; J. Cernicharo; Geoff Clayton; Loretta Dunne; Claes Fransson; J. Fritz; Walter Kieran Gear; Haley Louise Gomez; M. A. T. Groenewegen; Remy Indebetouw; R. J. Ivison; A. Jerkstrand; V. Lebouteiller; T. Lim; Peter Lundqvist; C. P. Pearson; Julia Roman-Duval; P. Royer; Lister Staveley-Smith; B. M. Swinyard; P. A. M. van Hoof; J. Th. van Loon; J. Verstappen; R. Wesson; Giovanna Zanardo

We present new Herschel photometric and spectroscopic observations of Supernova 1987A, carried out in 2012. Our dedicated photometric measurements provide new 70 micron data and improved imaging quality at 100 and 160 micron compared to previous observations in 2010. Our Herschel spectra show only weak CO line emission, and provide an upper limit for the 63 micron [O I] line flux, eliminating the possibility that line contaminations distort the previously estimated dust mass. The far-infrared spectral energy distribution (SED) is well fitted by thermal emission from cold dust. The newly measured 70 micron flux constrains the dust temperature, limiting it to nearly a single temperature. The far-infrared emission can be fitted by 0.5+-0.1 Msun of amorphous carbon, about a factor of two larger than the current nucleosynthetic mass prediction for carbon. The observation of SiO molecules at early and late phases suggests that silicates may also have formed and we could fit the SED with a combination of 0.3 Msun of amorphous carbon and 0.5 Msun of silicates, totalling 0.8 Msun of dust. Our analysis thus supports the presence of a large dust reservoir in the ejecta of SN 1987A. The inferred dust mass suggests that supernovae can be an important source of dust in the interstellar medium, from local to high-redshift galaxies.


Astronomy and Astrophysics | 2011

The GALEX Ultraviolet Virgo Cluster Survey (GUViCS) - I. The UV luminosity function of the central 12 sq. deg

A. Boselli; S. Boissier; S. Heinis; Luca Cortese; O. Ilbert; T. M. Hughes; O. Cucciati; Jonathan Ivor Davies; Laura Ferrarese; Riccardo Giovanelli; Martha P. Haynes; M. Baes; C. Balkowski; Noah Brosch; S. C. Chapman; V. Charmandaris; M. Clemens; Aliakbar Dariush; I. De Looze; S. di Serego Alighieri; Pierre-Alain Duc; Patrick R. Durrell; Eric Emsellem; T. Erben; J. Fritz; D. A. Garcia-Appadoo; G. Gavazzi; M. Grossi; Andres Jordan; Kelley M. Hess

The GALEX Ultraviolet Virgo Cluster Survey (GUViCS) is a complete blind survey of the Virgo cluster covering similar to 40 sq. deg in the far UV (FUV, lambda(eff) = 1539 angstrom, Delta lambda = 442 angstrom) and similar to 120 sq. deg in the near UV (NUV, lambda(eff) = 2316 angstrom, Delta lambda = 1060 angstrom). The goal of the survey is to study the ultraviolet (UV) properties of galaxies in a rich cluster environment, spanning a wide luminosity range from giants to dwarfs, and regardless of prior knowledge of their star formation activity. The UV data will be combined with those in other bands (optical: NGVS; far-infrared - submm: HeViCS; HI: ALFALFA) and with our multizone chemo-spectrophotometric models of galaxy evolution to make a complete and exhaustive study of the effects of the environment on the evolution of galaxies in high density regions. We present here the scientific objectives of the survey, describing the observing strategy and briefly discussing different data reduction techniques. Using UV data already in-hand for the central 12 sq. deg we determine the FUV and NUV luminosity functions of the Virgo cluster core for all cluster members and separately for early-and late-type galaxies and compare it to the one obtained in the field and other nearby clusters (Coma, A1367). This analysis shows that the FUV and NUV luminosity functions of the core of the Virgo clusters are flatter (alpha similar to -1.1) than those determined in Coma and A1367. We discuss the possible origin of this difference.


Astronomy and Astrophysics | 2010

FIR colours and SEDs of nearby galaxies observed with Herschel

A. Boselli; L. Ciesla; V. Buat; Luca Cortese; Robbie Richard Auld; M. Baes; G. J. Bendo; S. Bianchi; J. J. Bock; D. J. Bomans; M. Bradford; N. Castro-Rodriguez; P. Chanial; S. Charlot; M. Clemens; D. L. Clements; Edvige Corbelli; A. Cooray; D. Cormier; Aliakbar Dariush; Jonathan Ivor Davies; I. De Looze; S. di Serego Alighieri; Eli Dwek; Stephen Anthony Eales; D. Elbaz; D. Fadda; J. Fritz; M. Galametz; F. Galliano

We present infrared colours (in the 25-500 mu m spectral range) and UV to radio continuum spectral energy distributions of a sample of 51 nearby galaxies observed with SPIRE on Herschel. The observed sample includes all morphological classes, from quiescent ellipticals to active starbursts. Active galaxies have warmer colour temperatures than normal spirals. In ellipticals hosting a radio galaxy, the far-infrared (FIR) emission is dominated by the synchrotron nuclear emission. The colour temperature of the cold dust is higher in quiescent E-S0a than in star-forming systems probably because of the different nature of their dust heating sources (evolved stellar populations, X-ray, fast electrons) and dust grain properties. In contrast to the colour temperature of the warm dust, the f350/f500 index sensitive to the cold dust decreases with star formation and increases with metallicity, suggesting an overabundance of cold dust or an emissivity parameter beta <2 in low metallicity, active systems.


Monthly Notices of the Royal Astronomical Society | 2013

The Herschel Virgo Cluster survey, XII : FIR properties of optically selected Virgo cluster galaxies

R. Auld; S. Bianchi; Matthew William L. Smith; Jonathan Ivor Davies; G. J. Bendo; S. Alighieri di Serego; Luca Cortese; M. Baes; D. J. Bomans; M. Boquien; A. Boselli; L. Ciesla; M. Clemens; Edvige Corbelli; I. De Looze; J. Fritz; G. Gavazzi; C. Pappalardo; M. Grossi; L. K. Hunt; S. Madden; L. Magrini; Michael Pohlen; J. Verstappen; C. Vlahakis; E. M. Xilouris; S. Zibetti

The Herschel Virgo Cluster Survey (HeViCS) is the deepest, confusion-limited survey of the Virgo Cluster at far-infrared (FIR) wavelengths. The entire survey at full depth covers similar to 55 deg(2) in five bands (100-500 mu m), encompassing the areas around the central dominant elliptical galaxies (M87, M86 and M49) and extends as far as the NW cloud, the W cloud and the Southern extension. The survey extends beyond this region with lower sensitivity so that the total area covered is 84 deg(2). In this paper we describe the data, the data acquisition techniques and present the detection rates of the optically selected Virgo Cluster Catalogue (VCC). We detect 254 (34 per cent) of 750 VCC galaxies found within the survey boundary in at least one band and 171 galaxies are detected in all five bands. For the remainder of the galaxies we have measured strict upper limits for their FIR emission. The population of detected galaxies contains early as well as late types although the latter dominate the detection statistics. We have modelled 168 galaxies, showing no evidence of a strong synchrotron component in their FIR spectra, using a single-temperature modified blackbody spectrum with a fixed emissivity index (beta = 2). A study of the chi(2) distribution indicates that this model is not appropriate in all cases, and this is supported by the FIR colours which indicate a spread in beta = 1-2. Statistical comparison of the dust mass and temperature distributions from 140 galaxies with chi(2)(d.o.f.=3) \textless 7.8 (95 per cent confidence level) shows that late types have typically colder, more massive dust reservoirs; the early-type dust masses have a mean of log[\textless M \textgreater/M-circle dot] = 6.3 +/- 0.3, while for late types log[\textless M \textgreater/M-circle dot] = 7.1 +/- 0.1. The late-type dust temperatures have a mean of \textless T \textgreater = 19.4 +/- 0.2 K, while for the early types, \textless T \textgreater = 21.1 +/- 0.8 K. Late-type galaxies in the cluster exhibit slightly lower dust masses than those in the field, but the cluster environment seems to have little effect on the bulk dust properties of early types. In future papers we will focus more on the scientific analysis of the catalogue (e.g. measuring FIR luminosity functions, dust mass functions and resolved gas and dust properties).


Astronomy and Astrophysics | 2011

The Herschel Virgo Cluster Survey - IX. Dust-to-gas mass ratio and metallicity gradients in four Virgo spiral galaxies

L. Magrini; S. Bianchi; Edvige Corbelli; Luca Cortese; L. K. Hunt; Matthew William L. Smith; C. Vlahakis; Jonathan Ivor Davies; G. J. Bendo; M. Baes; A. Boselli; M. Clemens; V. Casasola; I. De Looze; J. Fritz; C. Giovanardi; M. Grossi; T. M. Hughes; S. Madden; C. Pappalardo; Michael Pohlen; S. di Serego Alighieri; J. Verstappen

Context. Using Herschel data from the Open Time Key Project the Herschel Virgo Cluster Survey (HeViCS) , we investigated the relationship between the metallicity gradients expressed by metal abundances in the gas phase as traced by the chemical composition of HII regions, and in the solid phase, as traced by the dust-t o-gas mass ratio. Aims. We derived the radial gradient of the dust-to-gas mass ratio for all galaxies observed by HeViCS whose metallicity gradients are available in the literature. They are all late type Sbc ga laxies, namely NGC4254, NGC4303, NGC4321, and NGC4501. Methods. We fitted PACS and SPIRE observations with a single-temperat ure modified blackbody, inferred the dust mass, and calculated two dimensional maps of the dust-to-gas mass ratio, with the total mass of gas from available HI and CO maps. HI moment-1 maps were used to derive the geometric parameters of the galaxies and extract the radial profiles. We examined di fferent dependencies on metallicity of the CO-to-H2 conversion factor (XCO ), used to transform the 12 CO observations into the amount of molecular hydrogen. Results. We found that in these galaxies the dust-to-gas mass ratio radial profile is extremely sensitive to choice of the XCO value, since the molecular gas is the dominant component in the inner parts. We found that for three galaxies of our sample, namely NGC4254, NGC4321, and NGC4501, the slopes of the oxygen and of the dust-to-gas radial gradients agree up to∼0.6-0.7R25 using XCO values in the range 1/3-1/2 Galactic XCO . For NGC4303 a lower value of XCO∼0.1× 10 20 is necessary. Conclusions. We suggest that such low XCO values might be due to a metallicity dependence of XCO (from close to linear for NGC4254, NGC4321, and NGC4501 to superlinear for NGC4303),especially in the radial regions RG <0.6-0.7R25 where the molecular gas dominates. On the other hand, the outer regions, where the atomic gas component is dominant, are less affected by the choice of XCO , and thus we cannot put constraints on its value.

Collaboration


Dive into the J. Verstappen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Fritz

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

A. Boselli

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

G. J. Bendo

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

I. De Looze

University College London

View shared research outputs
Top Co-Authors

Avatar

Luca Cortese

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge