J. Víctor Marcos
University of Valladolid
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. Víctor Marcos.
IEEE Transactions on Biomedical Engineering | 2010
Daniel Álvarez; Roberto Hornero; J. Víctor Marcos; Félix del Campo
This study focuses on the analysis of blood oxygen saturation (SaO2) from nocturnal pulse oximetry (NPO) to help in the diagnosis of the obstructive sleep apnea (OSA) syndrome. A population of 148 patients suspected of suffering from OSA syndrome was studied. A wide set of 16 features was used to characterize changes in the SaO2 profile during the night. Our feature set included common statistics in the time and frequency domains, conventional spectral characteristics from the power spectral density (PSD) function, and nonlinear features. We performed feature selection by means of a step-forward logistic regression (LR) approach with leave-one-out cross-validation. Second- and fourth-order statistical moments in the time domain (M2t and M4t), the relative power in the 0.014-0.033 Hz frequency band (PR), and the Lempel-Ziv complexity (LZC) were automatically selected. 92.0% sensitivity, 85.4% specificity, and 89.7% accuracy were obtained. The optimum feature set significantly improved the diagnostic ability of each feature individually. Furthermore, our results outperformed classic oximetric indexes commonly used by physicians. We conclude that simultaneous analysis in the time and frequency domains by means of statistical moments, spectral and nonlinear features could provide complementary information from NPO to improve OSA diagnosis.
Medical Engineering & Physics | 2009
J. Víctor Marcos; Roberto Hornero; Daniel Álvarez; Félix del Campo; Carlos Zamarrón
The aim of this study is to assess the utility of traditional statistical pattern recognition techniques to help in obstructive sleep apnoea (OSA) diagnosis. Classifiers based on quadratic (QDA) and linear (LDA) discriminant analysis, K-nearest neighbours (KNN) and logistic regression (LR) were evaluated. Spectral and nonlinear input features from oxygen saturation (SaO(2)) signals were applied. A total of 187 recordings from patients suspected of suffering from OSA were available. This initial dataset was divided into training set (74 subjects) and test set (113 subjects). Twelve classification algorithms were developed by applying QDA, LDA, KNN and LR with spectral features, nonlinear features and combination of both groups. The performance of each algorithm was measured on the test set by means of classification accuracy and receiver operating characteristic (ROC) analysis. QDA, LDA and LR showed better classification capability than KNN. The classifier based on LDA with spectral features provided the best diagnostic ability with an accuracy of 87.61% (91.05% sensitivity and 82.61% specificity) and an area under the ROC curve (AROC) of 0.925. The proposed statistical pattern recognition techniques could be applied as an OSA screening tool.
Medical & Biological Engineering & Computing | 2010
J. Víctor Marcos; Roberto Hornero; Daniel Álvarez; Félix del Campo; Mateo Aboy
Nocturnal polysomnography (PSG) is the gold-standard to diagnose obstructive sleep apnoea syndrome (OSAS). However, it is complex, expensive, and time-consuming. We present an automatic OSAS detection algorithm based on classification of nocturnal oxygen saturation (SaO2) recordings. The algorithm makes use of spectral and nonlinear analysis for feature extraction, principal component analysis (PCA) for preprocessing and linear discriminant analysis (LDA) for classification. We conducted a study to characterize and prospectively validate our OSAS detection algorithm. The population under study was composed of subjects suspected of suffering from OSAS. A total of 214 SaO2 signals were available. These signals were randomly divided into a training set (85 signals) and a test set (129 signals) to prospectively validate the proposed method. The OSAS detection algorithm achieved a diagnostic accuracy of 93.02% (97.00% sensitivity and 79.31% specificity) on the test set. It outperformed other alternative implementations that either use spectral and nonlinear features separately or are based on logistic regression (LR). The proposed method could be a useful tool to assist in early OSAS diagnosis, contributing to overcome the difficulties of conventional PSG.
Medical & Biological Engineering & Computing | 2008
J. Víctor Marcos; Roberto Hornero; Daniel Álvarez; Félix del Campo; Miguel López; Carlos Zamarrón
The aim of this study is to assess the ability of radial basis function (RBF) classifiers as an assistant tool for the diagnosis of the obstructive sleep apnoea syndrome (OSAS). A total of 187 subjects suspected of suffering from OSAS were available for our research. The initial population was divided into training, validation and test sets for deriving and testing our neural classifiers. We used nonlinear features from nocturnal oxygen saturation (SaO2) to perform patients’ classification. We evaluated three different RBF construction techniques based on the following algorithms: k-means (KM), fuzzy c-means (FCM) and orthogonal least squares (OLS). A diagnostic accuracy of 86.1, 84.7 and 85.5% was provided by the networks developed with KM, FCM and OLS, respectively. The three proposed networks achieved an area under the receiver operating characteristic (ROC) curve over 0.90. Our results showed that a useful non-invasive method could be applied to diagnose OSAS from nonlinear features of SaO2 with RBF classifiers.
International Journal of Neural Systems | 2013
Daniel Álvarez; Roberto Hornero; J. Víctor Marcos; Niels Wessel; Thomas Penzel; Martin Glos; Félix del Campo
This study is aimed at assessing the usefulness of different feature selection and classification methodologies in the context of sleep apnea hypopnea syndrome (SAHS) detection. Feature extraction, selection and classification stages were applied to analyze blood oxygen saturation (SaO2) recordings in order to simplify polysomnography (PSG), the gold standard diagnostic methodology for SAHS. Statistical, spectral and nonlinear measures were computed to compose the initial feature set. Principal component analysis (PCA), forward stepwise feature selection (FSFS) and genetic algorithms (GAs) were applied to select feature subsets. Fishers linear discriminant (FLD), logistic regression (LR) and support vector machines (SVMs) were applied in the classification stage. Optimum classification algorithms from each combination of these feature selection and classification approaches were prospectively validated on datasets from two independent sleep units. FSFS + LR achieved the highest diagnostic performance using a small feature subset (4 features), reaching 83.2% accuracy in the validation set and 88.7% accuracy in the test set. Similarly, GAs + SVM also achieved high generalization capability using a small number of input features (7 features), with 84.2% accuracy on the validation set and 84.5% accuracy in the test set. Our results suggest that reduced subsets of complementary features (25% to 50% of total features) and classifiers with high generalization ability could provide high-performance screening tools in the context of SAHS.
international conference of the ieee engineering in medicine and biology society | 2009
Daniel Álvarez; Roberto Hornero; J. Víctor Marcos; Félix del Campo; Miguel López
This study assessed the hypothesis that blood oxygen saturation (SaO2) and electroencephalogram (EEG) recordings could provide complementary information in the diagnosis of the obstructive sleep apnea (OSA) syndrome. We studied 148 patients suspected of suffering from OSA. Classical spectral parameters based on the relative power in specified frequency bands (Af-band) or peak amplitudes (PA) were used to characterize the frequency content of SaO2 and EEG recordings. Additionally, the median frequency (MF) and the spectral entropy (SE) were applied to obtain further spectral information. We applied a forward stepwise logistic regression (LR) procedure with crossvalidation leave-one-out to obtain the optimum spectral feature set. Two features from the oximetric spectral analysis (PA and MFsat) and three features from the EEG spectral analysis (Adelta, Aalpha and SEeeg) were automatically selected. 91.0% sensitivity, 83.3% specificity and 88.5% accuracy were obtained. These results suggest that MF and SE could provide additional information to classical frequency characteristics commonly used in OSA diagnosis. Additionally, nocturnal SaO2 and EEG recordings during the whole night could provide complementary information to help in the detection of OSA syndrome.
Computer Methods and Programs in Biomedicine | 2008
J. Víctor Marcos; Roberto Hornero; Daniel Álvarez; Félix del Campo; Carlos Zamarrón; Miguel López
The aim of this study is to assess the ability of multilayer perceptron (MLP) neural networks as an assistant tool in the diagnosis of the obstructive sleep apnoea syndrome (OSAS). Non-linear features from nocturnal oxygen saturation (SaO(2)) recordings were used to discriminate between OSAS positive and negative patients. A total of 187 subjects suspected of suffering from OSAS (111 with a positive diagnosis of OSAS and 76 with a negative diagnosis of OSAS) took part in the study. The initial population was divided into training, validation and test sets for deriving and testing our neural network classifier. Three methods were applied to extract non-linear features from SaO(2) signals: approximate entropy (ApEn), central tendency measure (CTM) and Lempel-Ziv complexity (LZC). The selected MLP-based classifier provided a diagnostic accuracy of 85.5% (89.8% sensitivity and 79.4% specificity). Our neural network algorithm could represent a useful technique for OSAS detection. It could contribute to reduce the demand for polysomnographic studies in OSAS screening.
Medical Engineering & Physics | 2012
Daniel Álvarez; Roberto Hornero; J. Víctor Marcos; Félix del Campo
Nocturnal pulse oximetry (NPO) has demonstrated to be a powerful tool to help in obstructive sleep apnoea (OSA) detection. However, additional analysis is needed to use NPO alone as an alternative to nocturnal polysomnography (NPSG), which is the gold standard for a definitive diagnosis. In the present study, we exhaustively analysed a database of blood oxygen saturation (SpO(2)) recordings (80 OSA-negative and 160 OSA-positive) to obtain further knowledge on the usefulness of NPO. Population set was randomly divided into training and test sets. A feature extraction stage was carried out: 16 features (time and frequency statistics and spectral and nonlinear features) were computed. A genetic algorithm (GA) approach was applied in the feature selection stage. Our methodology achieved 87.5% accuracy (90.6% sensitivity and 81.3% specificity) in the test set using a logistic regression (LR) classifier with a reduced number of complementary features (3 time domain statistics, 1 frequency domain statistic, 1 conventional spectral feature and 1 nonlinear feature) automatically selected by means of GAs. Our results improved diagnostic performance achieved with conventional oximetric indexes commonly used by physicians. We concluded that GAs could be an effective and robust tool to search for essential oximetric features that could enhance NPO in the context of OSA diagnosis.
Medical Engineering & Physics | 2016
J. Víctor Marcos; Roberto Hornero; Ian T. Nabney; Daniel Álvarez; Gonzalo C. Gutiérrez-Tobal; Félix del Campo
The relationship between sleep apnoea-hypopnoea syndrome (SAHS) severity and the regularity of nocturnal oxygen saturation (SaO2) recordings was analysed. Three different methods were proposed to quantify regularity: approximate entropy (AEn), sample entropy (SEn) and kernel entropy (KEn). A total of 240 subjects suspected of suffering from SAHS took part in the study. They were randomly divided into a training set (96 subjects) and a test set (144 subjects) for the adjustment and assessment of the proposed methods, respectively. According to the measurements provided by AEn, SEn and KEn, higher irregularity of oximetry signals is associated with SAHS-positive patients. Receiver operating characteristic (ROC) and Pearson correlation analyses showed that KEn was the most reliable predictor of SAHS. It provided an area under the ROC curve of 0.91 in two-class classification of subjects as SAHS-negative or SAHS-positive. Moreover, KEn measurements from oximetry data exhibited a linear dependence on the apnoea-hypopnoea index, as shown by a correlation coefficient of 0.87. Therefore, these measurements could be used for the development of simplified diagnostic techniques in order to reduce the demand for polysomnographies. Furthermore, KEn represents a convincing alternative to AEn and SEn for the diagnostic analysis of noisy biomedical signals.
international conference of the ieee engineering in medicine and biology society | 2011
J. Víctor Marcos; Roberto Hornero; Ian T. Nabney; Daniel Álvarez; Félix del Campo
In this study, a new entropy measure known as kernel entropy (KerEnt), which quantifies the irregularity in a series, was applied to nocturnal oxygen saturation (SaO2) recordings. A total of 96 subjects suspected of suffering from sleep apnea-hypopnea syndrome (SAHS) took part in the study: 32 SAHS-negative and 64 SAHS-positive subjects. Their SaO2 signals were separately processed by means of KerEnt. Our results show that a higher degree of irregularity is associated to SAHS-positive subjects. Statistical analysis revealed significant differences between the KerEnt values of SAHS-negative and SAHS-positive groups. The diagnostic utility of this parameter was studied by means of receiver operating characteristic (ROC) analysis. A classification accuracy of 81.25% (81.25% sensitivity and 81.25% specificity) was achieved. Repeated apneas during sleep increase irregularity in SaO2 data. This effect can be measured by KerEnt in order to detect SAHS. This non-linear measure can provide useful information for the development of alternative diagnostic techniques in order to reduce the demand for conventional polysomnography (PSG).