J.W. Belliveau
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J.W. Belliveau.
Neurology | 1999
Randall R. Benson; David B. FitzGerald; L.L. LeSueur; David N. Kennedy; Kenneth K. Kwong; Bradley R. Buchbinder; Timothy L. Davis; Robert M. Weisskoff; Thomas M. Talavage; W.J. Logan; G. R. Cosgrove; J.W. Belliveau; Bruce R. Rosen
Background: Functional MRI (fMRI) is of potential value in determining hemisphere dominance for language in epileptic patients. Objective: To develop and validate an fMRI-based method of determining language dominance for patients with a wide range of potentially operable brain lesions in addition to epilepsy. Methods: Initially, a within-subjects design was used with 19 healthy volunteers (11 strongly right-handed, 8 left-handed) to determine the relative lateralizing usefulness of three different language tasks in fMRI. An automated, hemispheric analysis of laterality was used to analyze whole brain fMRI data sets. To evaluate the clinical usefulness of this method, we compared fMRI-determined laterality with laterality determined by Wada testing or electrocortical stimulation mapping, or both, in 23 consecutive patients undergoing presurgical evaluation of language dominance. Results: Only the verb generation task was reliably lateralizing. fMRI, using the verb generation task and an automated hemispheric analysis method, was concordant with invasive measures in 22 of 23 patients (12 Wada, 11 cortical stimulation). For the single patient who was discordant, in whom a tumor involved one-third of the left hemisphere, fMRI became concordant when the tumor and its reflection in the right hemisphere were excluded from laterality analysis. No significant negative correlation was obtained between lesion size and strength of laterality for the patients with lesions involving the dominant hemisphere. Conclusion: This fMRI method shows potential for evaluating language dominance in patients with a variety of brain lesions.
NeuroImage | 2002
Jens Haueisen; David S. Tuch; Ceon Ramon; Paul H. Schimpf; Van J. Wedeen; John S. George; J.W. Belliveau
The influence of gray and white matter tissue anisotropy on the human electroencephalogram (EEG) and magnetoencephalogram (MEG) was examined with a high resolution finite element model of the head of an adult male subject. The conductivity tensor data for gray and white matter were estimated from magnetic resonance diffusion tensor imaging. Simulations were carried out with single dipoles or small extended sources in the cortical gray matter. The inclusion of anisotropic volume conduction in the brain was found to have a minor influence on the topology of EEG and MEG (and hence source localization). We found a major influence on the amplitude of EEG and MEG (and hence source strength estimation) due to the change in conductivity and the inclusion of anisotropy. We expect that inclusion of tissue anisotropy information will improve source estimation procedures.
NeuroImage | 2001
Giorgio Bonmassar; Denis Schwartz; Arthur K. Liu; Kenneth K. Kwong; A.M. Dale; J.W. Belliveau
Combined analysis of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has the potential to provide higher spatiotemporal resolution than either method alone. In some situations, in which the activity of interest cannot be reliably reproduced (e.g., epilepsy, learning, sleep states), accurate combined analysis requires simultaneous acquisition of EEG and fMRI. Simultaneous measurements ensure that the EEG and fMRI recordings reflect the exact same brain activity state. We took advantage of the spatial filtering properties of the bipolar montage to allow recording of very short (125--250 ms) visual-evoked potentials (VEPs) during fMRI. These EEG and fMRI measurements are of sufficient quality to allow source localization of the cortical generators. In addition, our source localization approach provides a combined EEG/fMRI analysis that does not require any manual selection of fMRI activations or placement of source dipoles. The source of the VEP was found to be located in the occipital cortex. Separate analysis of EEG and fMRI data demonstrated good spatial overlap of the observed activated sites. As expected, the combined EEG/fMRI analysis provided better spatiotemporal resolution than either approach alone. The resulting spatiotemporal movie allows for the millisecond-to-millisecond display of changes in cortical activity caused by visual stimulation. These data reveal two peaks in activity corresponding to the N75 and the P100 components. This type of simultaneous acquisition and analysis allows for the accurate characterization of the location and timing of neurophysiological activity in the human brain.
Neuroreport | 1996
Peter W. R. Woodruff; Randall R. Benson; Peter A. Bandettini; Kenneth K. Kwong; Robert Howard; Thomas M. Talavage; J.W. Belliveau; Bruce R. Rosen
Using functional magnetic resonance imaging (fMRI), we investigated whether the response of auditory and visual cortex was modulated by attending selectively to either heard or seen numbers presented simultaneously. Alternating attention between modalities modulated fMRI signal within the corresponding sensory cortex. This study provides evidence that attention acts locally during early auditory cognitive sensory processing, and that modulation of auditory and visual sensory cortex by attention is modality-dependent.
Human Brain Mapping | 1997
Peter A. Bandettini; Kenneth K. Kwong; Timothy L. Davis; Roger B. H. Tootell; Eric C. Wong; Peter T. Fox; J.W. Belliveau; Robert M. Weisskoff; Bruce R. Rosen
The behavior of cerebral blood flow and oxygenation during prolonged brain activation was studied using magnetic resonance imaging (MRI) sensitized to flow and oxygenation changes, as well as positron emission tomography sensitized to flow. Neuronal habituation effects and hemodynamic changes were evaluated across tasks and cortical regions. Nine types of activation stimuli or tasks, including motor activation, vibrotactile stimulation, and several types of visual stimulation, were used. Both flow and oxygenation were evaluated in separate time course series as well as simultaneously using two different MRI methods. In most cases, the activation‐induced increase in flow and oxygenation remained elevated for the entire stimulation duration. These results suggest that both flow rate and oxygenation consumption rate remain constant during the entire time that primary cortical neurons are activated by a task or a stimulus. Hum. Brain Mapping 5:93–109, 1997.
Neuroreport | 1999
Giorgio Bonmassar; Anami K; John R. Ives; J.W. Belliveau
We present the first simultaneous measurements of evoked potentials (EPs) and fMRI hemodynamic responses to visual stimulation. Visual evoked potentials (VEPs) were recorded both inside and outside the static 3T magnetic field, and during fMRI examination. We designed, constructed, and tested a non-magnetic 64-channel EEG recording cap. By using a large number of EEG channels it is possible to design a spatial filter capable of removing the artifact noise present when recording EEG/EPs within a strong magnetic field. We show that the designed spatial filter is capable of recovering the ballistocardiogram-contaminated original EEG signal. Isopotential plots of the electrode array recordings at the peak of the VEP response (approximately 100ms) correspond well with simultaneous fMRI observed activated areas of primary and secondary visual cortices.
Stroke | 1993
Leena M. Hamberg; R Macfarlane; E Tasdemiroglu; Pia Boccalini; George J. Hunter; J.W. Belliveau; Michael A. Moskowitz; Bruce R. Rosen
Background and Purpose Hemodynamic changes associated with acute ischemia cannot be measured with conventional nuclear magnetic resonance imaging. In this study, we used dynamic susceptibility-contrast magnetic resonance imaging to measure the changes in vascular transit time and relative cerebral blood volume in a feline occlusion-reperfusion model. Methods Dynamic susceptibility-contrast measurements were obtained before and during 10 minutes of global cerebral ischemia and for up to 3 hours after the onset of reperfusion. A cerebral blood flow index was calculated from the vascular transit time and relative cerebral blood volume measurements. Functional maps were constructed to demonstrate the regional hemodynamic differences resulting from the induced ischemia. Results During the early phase after reperfusion, both the relative cerebral blood volume and blood flow index rose sharply, followed by a fall to near-basal levels at 45 minutes (1 x control and 1.3 x control, respectively). Thereafter, the volume rose slowly, whereas the flow index continued to drop. At 3 hours, cerebral blood volume had reached 1.6 times its control value, whereas the flow index had returned to its base value. Conclusions The hemodynamic behavior we observed in our model reflects the independent responses of the cerebral blood volume and flow index to ischemic insult. Measurements acquired by our method were consistent with the temporal behavior reported in previous radionuclide studies. Susceptibility-contrast nuclear magnetic resonance tomographic imaging proved to be valuable in detecting and quantifying both immediate and subsequent changes in the hemodynamic state of the ischemic and hyperemic feline brain.
Acta Radiologica | 1995
Hannu J. Aronen; J. Glass; Francisco S. Pardo; J.W. Belliveau; M. L. Gruber; Bradley R. Buchbinder; I. E. Gazit; Rita M. Linggood; Alan J. Fischman; Bruce R. Rosen; Fred H. Hochberg
Neovascularization is a common phenomenon in gliomas. MR imaging cerebral blood volume (CBV) mapping utilizes ultrafast echo-planar imaging and simultaneous use of gadolinium-based contrast material. To determine the utility of MR CBV mapping in the clinical evaluation of gliomas, we followed 15 patients with serial studies. This technique provided functional information that was not evident with conventional CT or MR imaging. Low-grade tumors demonstrated homogeneously low CBV, while high-grade tumors often showed areas of both high and low CBV The maximum tumor CBV/white matter ratio was compared between low- (n = 3) and high-grade gliomas (n=5) in patients without previous treatment and with histologic verification (n=8) and was significantly higher in high-grade gliomas (p<0.01). High CBV foci in nonenhancing tumor areas were present in 2 cases. The distinction between radiation necrosis and active tumor could be made correctly in 3 of 4 cases. The information provided by MR CBV mapping has the potential to be an adjunct in the clinical care of glioma patients.
Investigative Radiology | 1992
J.W. Belliveau; Kenneth K. Kwong; David N. Kennedy; John R. Baker; Chantal E. Stern; Randall R. Benson; David A. Chesler; Robert M. Weisskoff; Mark S. Cohen; Roger B. H. Tootell; Peter T. Fox; Thomas J. Brady; Bruce R. Rosen
&NA; Belliveau JW, Kwong KK, Kennedy DN, Baker JR, Stern CE, Benson R, Chesler DA, Weisskoff RM, Cohen MS, Tootell RBH, Fox PT, Brady TJ, Rosen BR. Magnetic resonance imaging mapping of brain function: human visual cortex. Invest Radiol 1992;27:S59‐S65. Magnetic resonance imaging (MRI) studies of human brain activity are described. Task‐induced changes in brain cognitive state were measured using high‐speed MRI techniques sensitive to changes in cerebral blood volume (CBV), blood flow (CBF), and blood oxygenation. These techniques were used to generate the first functional MRI maps of human task activation, by using a visual stimulus paradigm. The methodology of MRI brain mapping and results from the investigation of the functional organization and frequency response of human primary visual cortex (V1) are presented.
Neuroreport | 1996
Stephan A. Brandt; Timothy L. Davis; Hellmuth Obrig; Bernd-Ulrich Meyer; J.W. Belliveau; Bruce R. Rosen; Arno Villringer
Area and depth penetration of transcranial stimulation methods such as transcranial electrical stimulation (TES) are poorly defined. We investigated the feasibility of a simultaneous TES and fMRI measurement. The aim was to compare the signal intensity changes measured using BOLD fMRI during sequential finger movement with the signal response during artificial transcranial stimulation. TES induced contralateral finger contractions and in T2* weighted images a transient signal increase was observed in the area underlying the electrodes. Compared with the signal obtained during sequential finger movements, the area activated by TES was more localized, signal amplitude was smaller and there was no post- stimulus undershoot. These data indicate that TES induces a local blood flow increase associated with a drop in the concentration of deoxyhaemoglobin.