Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J.W.H. Wolthaus is active.

Publication


Featured researches published by J.W.H. Wolthaus.


Physics in Medicine and Biology | 2017

First patients treated with a 1.5 T MRI-Linac : Clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment

B W Raaymakers; I.M. Jürgenliemk-Schulz; G.H. Bol; M Glitzner; Alexis N.T.J. Kotte; B. Van Asselen; J C J de Boer; J J Bluemink; S.L. Hackett; Marinus A. Moerland; S Woodings; J.W.H. Wolthaus; H M van Zijp; M.E.P. Philippens; R.H.N. Tijssen; J G M Kok; E.N. De Groot-van Breugel; I.H. Kiekebosch; L.T.C. Meijers; C.N. Nomden; G.G. Sikkes; P. Doornaert; W S C Eppinga; N. Kasperts; Linda G W Kerkmeijer; J.H.A. Tersteeg; Kristy J. Brown; B.R. Pais; P.L. Woodhead; J.J.W. Lagendijk

The integration of 1.5 T MRI functionality with a radiotherapy linear accelerator (linac) has been pursued since 1999 by the UMC Utrecht in close collaboration with Elekta and Philips. The idea behind this integrated device is to offer unrivalled, online and real-time, soft-tissue visualization of the tumour and the surroundings for more precise radiation delivery. The proof of concept of this device was given in 2009 by demonstrating simultaneous irradiation and MR imaging on phantoms, since then the device has been further developed and commercialized by Elekta. The aim of this work is to demonstrate the clinical feasibility of online, high-precision, high-field MRI guidance of radiotherapy using the first clinical prototype MRI-Linac. Four patients with lumbar spine bone metastases were treated with a 3 or 5 beam step-and-shoot IMRT plan. The IMRT plan was created while the patient was on the treatment table and based on the online 1.5 T MR images; pre-treatment CT was deformably registered to the online MRI to obtain Hounsfield values. Bone metastases were chosen as the first site as these tumors can be clearly visualized on MRI and the surrounding spine bone can be detected on the integrated portal imager. This way the portal images served as an independent verification of the MRI based guidance to quantify the geometric precision of radiation delivery. Dosimetric accuracy was assessed post-treatment from phantom measurements with an ionization chamber and film. Absolute doses were found to be highly accurate, with deviations ranging from 0.0% to 1.7% in the isocenter. The geometrical, MRI based targeting as confirmed using portal images was better than 0.5 mm, ranging from 0.2 mm to 0.4 mm. In conclusion, high precision, high-field, 1.5 T MRI guided radiotherapy is clinically feasible.


Medical Physics | 2016

Consequences of air around an ionization chamber : Are existing solid phantoms suitable for reference dosimetry on an MR-linac?

S. L. Hackett; B. Van Asselen; J.W.H. Wolthaus; J G M Kok; S Woodings; J.J.W. Lagendijk; B W Raaymakers

PURPOSE A protocol for reference dosimetry for the MR-linac is under development. The 1.5 T magnetic field changes the mean path length of electrons in an air-filled ionization chamber but has little effect on the electron trajectories in a surrounding phantom. It is therefore necessary to correct the response of an ionization chamber for the influence of the magnetic field. Solid phantoms are used for dosimetry measurements on the MR-linac, but air is present between the chamber wall and phantom insert. This study aimed to determine if this air influences the ion chamber measurements on the MR-linac. The absolute response of the chamber and reproducibility of dosimetry measurements were assessed on an MR-linac in solid and water phantoms. The sensitivity of the chamber response to the distribution of air around the chamber was also investigated. METHODS Measurements were performed on an MR-linac and replicated on a conventional linac for five chambers. The response of three waterproof chambers was measured with air and with water between the chamber and the insert to measure the influence of the air volume on absolute chamber response. The distribution of air around the chamber was varied indirectly by rotating each chamber about the longitudinal chamber axis in a solid phantom and a water phantom (waterproof chambers only) and measuring the angular dependence of the chamber response, and varied directly by displacing the chamber in the phantom insert using a paper shim positioned at different orientations between the chamber casing and the insert. RESULTS The responses of the three waterproof chambers measured on the MR-linac were 0.7%-1.2% higher with water than air in the chamber insert. The responses of the chambers on the conventional linac changed by less than 0.3% when air in the insert was replaced with water. The angular dependence of the chambers ranged from 0.6% to 1.9% in the solid phantom on the MR-linac but was less than 0.5% in water on the MR-linac and less than 0.3% in the solid phantom on the conventional linac. Inserting a shim around the chamber induced changes of the chamber response in a magnetic field of up to 2.2%, but the change in chamber response on the conventional linac was less than 0.3%. CONCLUSIONS The interaction between the magnetic field and secondary electrons in the air around the chamber reduces the charge collected from 0.7% to 1.2%. The large angular dependence of ion chambers measured in the plastic phantom in a magnetic field appears to arise from a change of air distribution as the chamber is moved within the insert, rather than an intrinsic isotropy of the chamber sensitivity to radiation. It is recommended that reference dosimetry measurements on the MR-linac can be performed only in water, rather than in existing plastic phantoms.


Physics in Medicine and Biology | 2016

The NCS code of practice for the quality assurance and control for volumetric modulated arc therapy

Anton Mans; D. Schuring; Mark P. Arends; Cornelia A. J. M. Vugts; J.W.H. Wolthaus; H. Lotz; Marjan Admiraal; Rob Jw Louwe; Michel Öllers; Jeroen B. van de Kamer

In 2010, the NCS (Netherlands Commission on Radiation Dosimetry) installed a subcommittee to develop guidelines for quality assurance and control for volumetric modulated arc therapy (VMAT) treatments. The report (published in 2015) has been written by Dutch medical physicists and has therefore, inevitably, a Dutch focus. This paper is a condensed version of these guidelines, the full report in English is freely available from the NCS website www.radiationdosimetry.org. After describing the transition from IMRT to VMAT, the paper addresses machine quality assurance (QA) and treatment planning system (TPS) commissioning for VMAT. The final section discusses patient specific QA issues such as the use of class solutions, measurement devices and dose evaluation methods.


Physics in Medicine and Biology | 2016

Performance of a cylindrical diode array for use in a 1.5 T MR-linac.

A.C. Houweling; J.H.W. De Vries; J.W.H. Wolthaus; S Woodings; J G M Kok; B. Van Asselen; K Smit; A Bel; J.J.W. Lagendijk; B W Raaymakers

At the UMC Utrecht, a linear accelerator with integrated magnetic resonance imaging (MRI) has been developed, the MR-linac. Patient-specific quality assurance (QA) of treatment plans for MRI-based image guided radiotherapy requires QA equipment compatible with this 1.5 T magnetic field. The purpose of this study was to examine the performance characteristics of the ArcCHECK-MR in a transverse 1.5 T magnetic field. To this end, the short-term reproducibility, dose linearity, dose rate dependence, field size dependence, dose per pulse dependence and inter-diode dose response variation of the ArcCHECK-MR diode array were evaluated on a conventional linac and on the MR-linac. The ArcCHECK-MR diode array performed well for all tests on both linacs, no significant differences in performance characteristics were observed. Differences in the maximum dose deviations between both linacs were less than 1.5%. Therefore, we conclude that the ArcCHECK-MR can be used in a transverse 1.5 T magnetic field.


Physics in Medicine and Biology | 2016

Minimizing the magnetic field effect in MR-linac specific QA-tests: the use of electron dense materials

H M van Zijp; B. Van Asselen; J.W.H. Wolthaus; J M G Kok; J.H.W. De Vries; K Ishakoglu; E Beld; J.J.W. Lagendijk; B W Raaymakers

To address the quality assurance (QA) of a MR-linac which is an MRI combined with a linear accelerator (linac), the traditional linac QA-tests need to be redesigned, since the presence of the static magnetic field in the MR-linac alters the electron trajectory. The latter causes the asymmetry in the dose kernel which is introduced by the magnetic field and hinders accurate geometrical QA-tests for the MR-linac. We introduced the use of electron dense materials (e.g. copper) to reduce the size of the dose kernel and thereby the magnetic field effect on the dose deposition. Two examples of QA-tests are presented in which the geometrical accuracy of the MR-linac was addressed; beam profile and star-shot measurements. The introduced setup was compared with a reference setup and both were tested on a conventional and the MR-linac. The results showed that the symmetry of the recorded beam profile was restored in presence of the copper material and that the isocenter size of the MR-linac can be determined accurately with the introduced star-shot setup. The use of electron dense materials is not limited to the presented QA-tests but has a broad application for beam-specific QA-tests in presence of a magnetic field.


Physics in Medicine and Biology | 2018

Characterization of a prototype MR-compatible Delta4 QA system in a 1.5 tesla MR-linac

J.H.W. De Vries; E Seravalli; A C Houweling; S Woodings; R van Rooij; J.W.H. Wolthaus; J.J.W. Lagendijk; B W Raaymakers

To perform patient plan quality assurance (QA) on a newly installed MR-linac (MRL) it is necessary to have an MR-compatible QA device. An MR compatible device (MR-Delta4) has been developed together with Scandidos AB (Uppsala, Sweden). The basic characteristics of the detector response, such as short-term reproducibility, dose linearity, field size dependency, dose rate dependency, dose-per-pulse dependency and angular dependency, were investigated for the clinical Delta4-PT as well as for the MR compatible version. All tests were performed with both devices on a conventional linac and the MR compatible device was tested on the MRL as well. No statistically significant differences were found in the short-term reproducibility (<0.1%), dose linearity (⩽0.5%), field size dependency (<2.0% for field sizes larger than 5  ×  5 cm2), dose rate dependency (<1.0%) or angular dependency for any phantom/linac combination. The dose-per-pulse dependency (<0.8%) was found to be significantly different between the two devices. This difference can be explained by the fact that the diodes in the clinical Delta4-PT were irradiated with a much larger dose than the MR-Delta4-PT ones. The absolute difference between the devices (<0.5%) was found to be small, so no clinical impact is expected. For both devices, the results were consistent with the characteristics of the Delta4-PT device reported in the literature (Bedford et al 2009 Phys. Med. Biol. 54 N167-76; Sadagopan et al 2009 J. Appl. Clin. Med. Phys. 10 2928). We found that the characteristics of the MR compatible Delta4 phantom were found to be comparable to the clinically used one. Also, the found characteristics do not differ from the previously reported characteristics of the commercially available non-MR compatible Delta4-PT phantom. Therefore, the MR compatible Delta4 prototype was found to be safe and effective for use in the 1.5 tesla magnetic field of the Elekta MR-linac.


Physics in Medicine and Biology | 2018

Spiraling contaminant electrons increase doses to surfaces outside the photon beam of an MRI-linac with a perpendicular magnetic field

Sara L Hackett; Bram van Asselen; J.W.H. Wolthaus; J J Bluemink; Kübra Ishakoglu; Jan G M Kok; Jan J.W. Lagendijk; B W Raaymakers

The transverse magnetic field of an MRI-linac sweeps contaminant electrons away from the radiation beam. Films oriented perpendicular to the magnetic field and 5 cm from the radiation beam edge show a projection of the divergent beam, indicating that contaminant electrons spiral along magnetic field lines and deposit dose on surfaces outside the primary beam perpendicular to the magnetic field. These spiraling contaminant electrons (SCE) could increase skin doses to protruding regions of the patient along the cranio-caudal axis. This study investigated doses from SCE for an MRI-linac comprising a 7 MV linac and a 1.5 T MRI scanner. Surface doses to films perpendicular to the magnetic field and 5 cm from the radiation beam edge showed increased dose within the projection of the primary beam, whereas films parallel to the magnetic field and 5 cm from the beam edge showed no region of increased dose. However, the dose from contaminant electrons is absorbed within a few millimeters. For large fields, the SCE dose is within the same order of magnitude as doses from scattered and leakage photons. Doses for both SCE and scattered photons decrease rapidly with decreasing beam size and increasing distance from the beam edge.


Physics in Medicine and Biology | 2018

The characterization of a large multi-axis ionization chamber array in a 1.5 T MRI linac

T. Perik; J. Kaas; Steffen Greilich; J.W.H. Wolthaus; F.W. Wittkämper

By combining magnetic resonance imaging (MRI) scanners and radiotherapy treatment units the need arises for new radiation measurement equipment that can be used in the magnetic field of the MRI. This study describes the investigation of the influence of the 1.5 T magnetic field from an MRI linac on the STARCHECKMAXI MR, a large 2D ionization chamber detector panel. Measurements were performed on an MRI linac and a conventional linac to investigate the behaviour of the detector panel with and without the 1.5 T magnetic field. We measured reproducibility, linearity, warm-up effect, saturation/recombination and chamber orientation. A comparison with gafchromic film was performed and the effect of motion of the panel during measurements inside a magnetic field was investigated. The reproducibility, linearity, warm-up effect, saturation/recombination show no significant deviations with or without magnetic field. An absolute difference in reading of 2.1% was found between off-axis chambers on different axes. The comparison with film shows good agreement. Spurious readings are induced while the panel is undergoing a motion in the magnetic field during measurements. The STARCHECKMAXI MR is suited for use in a 1.5 T MRI linac. Care must be taken when comparing un-normalized profiles from different axes of the detector panel and when the panel is undergoing motion during measurements.


Physics in Medicine and Biology | 2018

Beam characterisation of the 1.5 T MRI-linac

S Woodings; J J Bluemink; J.H.W. De Vries; Yury Niatsetski; B van Veelen; J. Schillings; J G M Kok; J.W.H. Wolthaus; S. L. Hackett; B. Van Asselen; H M van Zijp; S Pencea; D.A. Roberts; J.J.W. Lagendijk; B W Raaymakers

As a prerequisite for clinical treatments it was necessary to characterize the Elekta 1.5 T MRI-linac 7 MV FFF radiation beam. Following acceptance testing, beam characterization data were acquired with Semiflex 3D (PTW 31021), microDiamond (PTW 60019), and Farmer-type (PTW 30013 and IBA FC65-G) detectors in an Elekta 3D scanning water phantom and a PTW 1D water phantom. EBT3 Gafchromic film and ion chamber measurements in a buildup cap were also used. Special consideration was given to scan offsets, detector effective points of measurement and avoiding air gaps. Machine performance has been verified and the system satisfied the relevant beam requirements of IEC60976. Beam data were acquired for field sizes between 1  ×  1 and 57  ×  22 cm2. New techniques were developed to measure percentage depth dose (PDD) curves including the electron return effect at beam exit, which exhibits an electron-type practical range of 1.2 ± 0.1 cm. The Lorentz force acting on the secondary charged particles creates an asymmetry in the crossline profiles with an average shift of  +0.24 cm. For a 10  ×  10 cm2 beam, scatter from the cryostat contributes 1% of the dose at isocentre. This affects the relative output factors, scatter factors and beam profiles, both in-field and out-of-field. The average 20%-80% penumbral width measured for small fields with a microDiamond detector at 10 cm depth is 0.50 cm. MRI-linac penumbral widths are very similar to that of the Elekta Agility linac MLC, as is the near-surface dose PDD(0.2 cm)  =  57%. The entrance surface dose is  ∼36% of Dmax. Cryostat transmission is quantified for inclusion within the treatment planning system. As a result, the 1.5 T MRI-linac 7 MV FFF beam has been characterised for the first time and is suitable for clinical use. This was a key step towards the first clinical treatments with the MRI-linac, which were delivered at University Medical Center Utrecht in May 2017 (Raaymakers et al 2017 Phys. Med. Biol. 62 L41-50).


Physics in Medicine and Biology | 2018

A formalism for reference dosimetry in photon beams in the presence of a magnetic field

B. Van Asselen; S Woodings; S.L. Hackett; T van Soest; J G M Kok; B W Raaymakers; J.W.H. Wolthaus

A generic formalism is proposed for reference dosimetry in the presence of a magnetic field. Besides the regular correction factors from the conventional reference dosimetry formalisms, two factors are used to take into account magnetic field effects: (1) a dose conversion factor to correct for the change in local dose distribution and (2) a correction of the reading of the dosimeter used for the reference dosimetry measurements. The formalism was applied to the Elekta MRI-Linac, for which the 1.5 T magnetic field is orthogonal to the 7 MV photon beam. For this setup at reference conditions it was shown that the dose decreases with increasing magnetic field strength. The reduction in local dose for a 1.5 T transverse field, compared to no field is 0.51%  ±  0.03% at the reference point of 10 cm depth. The effect of the magnetic field on the reading of the dosimeter was measured for two waterproof ionization chambers types (PTW 30013 and IBA FC65-G) before and after multiple ramp-up and ramp-downs of the magnetic field. The chambers were aligned perpendicular and parallel to the magnetic field. The corrections of the readings of the perpendicularly aligned chambers were 0.967  ±  0.002 and 0.957  ±  0.002 for respectively the PTW and IBA ionization chambers. In the parallel alignment the corrections were small; 0.997  ±  0.001 and 1.002  ±  0.003 for the PTW and IBA chamber respectively. The change in reading due to the magnetic field can be measured by individual departments. The proposed formalism can be used to determine the correction factors needed to establish the absorbed dose in a magnetic field. It requires Monte Carlo simulations of the local dose and measurements of the response of the dosimeter. The formalism was successfully implemented for the MRI-Linac and is applicable for other field strengths and geometries.

Collaboration


Dive into the J.W.H. Wolthaus's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S.L. Hackett

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge