J. W. van de Leur
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. W. van de Leur.
Journal of Mathematical Physics | 2003
Victor G. Kac; J. W. van de Leur
It is the aim of the present article to give all formulations of the n-component KP hierarchy and clarify connections between them. The generalization to the n-component KP hierarchy is important because it contains many of the most popular systems of soliton equations, like the Davey–Stewartson system (for n=2), the two-dimensional Toda lattice (for n=2), the n-wave system (for n⩾3) and the Darboux–Egoroff system. It also allows us to construct natural generalizations to the Davey–Stewartson and Toda lattice systems. Of course, the inclusion of all these systems in the n-component KP hierarchy allows us to construct their solutions by making use of vertex operators.
Theoretical and Mathematical Physics | 2003
H. Aratyn; J. W. van de Leur
AbstractAn integrable structure behind the Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) equations is identified with the reduction of the Riemann–Hilbert problem for the homogeneous loop group
Symmetry Integrability and Geometry-methods and Applications | 2012
J. W. van de Leur; A. Yu. Orlov; T. Shiota
Theoretical and Mathematical Physics | 2011
J. Harnad; J. W. van de Leur; A. Yu. Orlov
\widehat{GL}(N,\mathbb{C})
Theoretical and Mathematical Physics | 1995
J. W. van de Leur
Annales de l'Institut Fourier | 1987
Victor G. Kac; J. W. van de Leur
. The reduction requires the dressing matrices to be fixed points of an order-two loop group automorphism resulting in a subhierarchy of the
arXiv: Exactly Solvable and Integrable Systems | 1998
Victor G. Kac; J. W. van de Leur
Archive | 1993
Victor G. Kac; J. W. van de Leur
\widehat{gL}(N,\mathbb{C})
Physics Letters A | 2009
J. W. van de Leur; A. Yu. Orlov
Theoretical and Mathematical Physics | 2010
Arthemy V. Kiselev; J. W. van de Leur
hierarchy containing only odd-symmetry flows. The model has Virasoro symmetry; imposing Virasoro constraints ensures the homogeneity property of the Darboux–Egoroff structure. Dressing matrices of the reduced model provide solutions of the WDVV equations.