Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Y. Luo is active.

Publication


Featured researches published by J. Y. Luo.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Superconductivity in the PbO-type structure α-FeSe

F. C. Hsu; J. Y. Luo; Kuo-Wei Yeh; Ta-Kun Chen; Tzu-Wen Huang; Phillip M. Wu; Yong-Chi Lee; Yi-Lin Huang; Yan-Yi Chu; Der-Chung Yan; M. K. Wu

The recent discovery of superconductivity with relatively high transition temperature (Tc) in the layered iron-based quaternary oxypnictides La[O1−xFx] FeAs by Kamihara et al. [Kamihara Y, Watanabe T, Hirano M, Hosono H (2008) Iron-based layered superconductor La[O1-xFx] FeAs (x = 0.05–0.12) with Tc = 26 K. J Am Chem Soc 130:3296–3297.] was a real surprise and has generated tremendous interest. Although superconductivity exists in alloy that contains the element Fe, LaOMPn (with M = Fe, Ni; and Pn = P and As) is the first system where Fe plays the key role to the occurrence of superconductivity. LaOMPn has a layered crystal structure with an Fe-based plane. It is quite natural to search whether there exists other Fe based planar compounds that exhibit superconductivity. Here, we report the observation of superconductivity with zero-resistance transition temperature at 8 K in the PbO-type α-FeSe compound. A key observation is that the clean superconducting phase exists only in those samples prepared with intentional Se deficiency. FeSe, compared with LaOFeAs, is less toxic and much easier to handle. What is truly striking is that this compound has the same, perhaps simpler, planar crystal sublattice as the layered oxypnictides. Therefore, this result provides an opportunity to better understand the underlying mechanism of superconductivity in this class of unconventional superconductors.


EPL | 2008

Tellurium substitution effect on superconductivity of the α-phase iron selenide

Kuo-Wei Yeh; Tzu-Wen Huang; Yi-Lin Huang; Ta-Kun Chen; F. C. Hsu; Phillip M. Wu; Yong-Chi Lee; Yan-Yi Chu; C. L. Chen; J. Y. Luo; Der-Chung Yan; M. K. Wu

We have carried out a systematic study of the PbO-type compound FeSe1−xTex (x=0–1), where the Te substitution effect on superconductivity is investigated. It is found that the superconducting transition temperature reaches a maximum of Tc=15.2 K at about 50% Te substitution. The pressure-enhanced Tc of FeSe0.5Te0.5 is more than 10 times larger than that of FeSe. Interestingly, FeTe is no longer superconducting. A low-temperature structural distortion changes FeTe from triclinic symmetry to orthorhombic symmetry. We believe that this structural change breaks the magnetic symmetry and suppresses superconductivity in FeTe.


Physical Review Letters | 2009

Crystal orientation and thickness dependence of the superconducting transition temperature of tetragonal FeSe1-x thin films.

M. J. Wang; J. Y. Luo; Tzu-Wen Huang; H. H. Chang; Ta-Kun Chen; F. C. Hsu; C. T. Wu; Phillip M. Wu; A. M. Chang; M. K. Wu

Superconductivity was recently found in the tetragonal phase FeSe. A structural transformation from tetragonal to orthorhombic (or monoclinic, depending on point of view) was observed at low temperature, but was not accompanied by a magnetic ordering as commonly occurs in the parent compounds of FeAs-based superconductors. Here, we report the correlation between structural distortion and superconductivity in FeSe(1-x) thin films with different preferred growth orientations. The films with preferred growth along the c axis show a strong thickness dependent suppression of superconductivity and low temperature structural distortion. In contrast, both properties are less affected in the films with (101) preferred orientation. These results suggest that the low temperature structural distortion is closely associated with the superconductivity of this material.


Journal of the Physical Society of Japan | 2008

Se and Te Doping Study of the FeSe Superconductors

Kuo-Wei Yeh; Tzu-Wen Huang; Yi-Lin Huang; J. Y. Luo; M. K. Wu

Here we present a systematic study of correlation between superconductivity with Se-content and Te-doping to the �. -FeSe system. Detailed structural and specific heat measurements at low temperature suggest that the occurrence of superconductivity is closely related to the presence of P-1 (triclinic) symmetry at low temperature. Magnetic field dependence of the resistive transition in polycrystalline �. -FeSe1-x and FeSe1-xTex suggest that Te-doping tends to induce the system to become more 2D-like and enhances substantially the upper critical field value, whereas the FeSe system behaves more like 3D superconductor.


Physical Review Letters | 2012

Gap opening and orbital modification of superconducting FeSe above the structural distortion.

Yu-Chieh Wen; K. J. Wang; H.-H. Chang; J. Y. Luo; Chih Chiang Shen; Hsiang Lin Liu; Chi-Kuang Sun; Ming-Jye Wang; M. K. Wu

We utilize steady-state and transient optical spectroscopies to examine the responses of nonthermal quasiparticles with respect to orbital modifications in normal-state iron-chalcogenide superconductors. The dynamics shows the emergence of gaplike quasiparticles (associated with a ~36 meV energy gap) with a coincident transfer of the optical spectral weight in the visible range, at temperatures above the structural distortion. Our observations suggest that opening of the high-temperature gap and the lattice symmetry breaking are possibly driven by short-range orbital and/or charge orders, implicating a close correlation between electronic nematicity and precursor order in iron-based superconductors.


Applied Physics Letters | 2010

Heterojunction of Fe(Se1−xTex) superconductor on Nb-doped SrTiO3

C. T. Wu; H. H. Chang; J. Y. Luo; Tse-Jun Chen; F. C. Hsu; Ta-Kun Chen; Ming-Jye Wang; M. K. Wu

We report the fabrication of heterojunctions formed by the FeSe0.5Te0.5 (FeSeTe) superconductor and Nb-doped SrTiO3 semiconducting substrate and their properties. At high temperature when FeSeTe is in its normal state, the forward bias I−V curves behave like a metal-semiconductor junction with a low Schottky barrier. Direct tunneling through the thin depletion layer of the junction dominates the reverse bias I−V curves. When FeSeTe film becomes superconducting at low temperature, we observed that the Schottky barrier height of the junction increased but was suppressed by an external magnetic field. This deviation provides an estimate of the superconducting energy gap of the FeSeTe film.


Superconductor Science and Technology | 2012

Weak localization in FeSe1-xTex superconducting thin films

H. H. Chang; J. Y. Luo; C. T. Wu; F. C. Hsu; Tzu-Wen Huang; Phillip M. Wu; M. K. Wu; Ming-Jye Wang

We have investigated the magneto-resistivity (MR) of FeSe1 xTex superconducting films on MgO substrate. The MR of pure FeSe and slightly Te-substituted films demonstrates regular Lorentz-type magnetic field dependence, MR B 2 . In highly Te-substituted samples, however, negative MR contribution due to the weak-localization effect gradually dominates at low temperature, which is consistent with the evolution of the temperature dependence of resistivity from a metallic to a weakly semiconductor-like behavior. Furthermore, the negative MR weakens and turns positive as temperature approaches the superconducting transition temperature, which is evidence for the Maki‐Thompson correction in the weak-localization regime. The experimental data can be described very well by the weak-localization theory with the existence of scattering by some magnetic moments. The fitting parameters demonstrate that disorder most likely comes from the excess iron. (Some figures may appear in colour only in the online journal)


Superconductor Science and Technology | 2014

Growth and characterization of superconducting beta-FeSe type iron chalcogenide nanowires

H.-H. Chang; Ching-Chun Chang; Y. Y. Chiang; J. Y. Luo; Phillip M. Wu; C. M. Tseng; Yong-Chi Lee; Yu-Ruei Wu; Yao Tsung Hsieh; Min-Hsueh Wen; M. J. Wang; M. K. Wu

We have grown highly crystalline beta-FeSe type iron chalcogenide nanowires (NWs) by annealing thin film that is prepared by a pulsed laser deposition method. Three kinds of NWs with compositions of Fe0.8Se, Fe0.88Se0.32Te0.68 and Fe0.88Te0.91S0.09 have been prepared and carefully characterized by a high-resolution transmission electron microscope (HRTEM). The NWs reveal ideal tetragonal structure with crystal growth along the [100] direction. Energy dispersive spectroscopy (EDS) studies and HRTEM images show the NWs to have good compositional uniformity, except for the existence of a thin layer of oxide on the surface. No superconducting transition was observed in the FeSex NWs, which is possibly caused by Fe deficiency. The other two types of NWs show relatively higher and sharper superconducting transitions than their bulk counterparts. Interestingly, a resistive transition tail is observed in the NWs with diameter smaller than 100 nm, which might originate from a phase slip process in the quasi-one-dimensional system. The success in producing these high quality NWs provides a new avenue for better understanding the origin of superconductivity in beta-FeSe type iron chalcogenides.


Superconductor Science and Technology | 2011

The vortex state of FeSe1 − xTex superconducting thin films

H. H. Chang; J. Y. Luo; C. T. Wu; F. C. Hsu; Tzu-Wen Huang; Phillip M. Wu; M. K. Wu; Ming-Jye Wang

We report the vortex dynamics of tellurium substituted FeSe1-xTex superconducting thin films. The electric field versus current density (E-J) curve for films with low Te substitution is still governed by the thermally activated flux flow model at temperatures as low as 0.5T(C)(offset). In contrast, we clearly observed a vortex liquid-glass transition in films with high Te substitution. The E-J curves of these samples fit nicely to the scaling relations based on the 3D vortex glass theory. Our results reveal an enhancement of the vortex pinning as more Te content is introduced, which probably originates from the excess Fe at the interstitial site.


Journal of Applied Physics | 2011

Elastic stiffness of single-crystalline FeSe measured by picosecond ultrasonics

Yu-Chieh Wen; Y. C. Liao; Hsian-Hong Chang; B. H. Mok; Y. J. Lee; Tzu-Wen Huang; Kuo-Wei Yeh; J. Y. Luo; Ming-Jye Wang; Chi-Kuang Sun; M. K. Wu

We report investigations on the elasticity of superconducting FeSe using picosecond ultrasonic technique. The tetragonal (001) FeSe thin film, deposited on a processed SrTiO3 substrate by the pulsed laser deposition, exhibits distinct c-axis preferred orientation and single-crystalline features as a result of the x-ray diffraction. The high-quality crystallinity thus enables quantitative examinations of anisotropic stiffness coefficients (C33) of FeSe, correlating to the interatomic interaction in the simplest iron-based superconductor. Our experiment indicates a room-temperature C33 of 40.9 ± 0.4 GPa and material stiffening of 4.3% at low temperatures, which can be explained by the weakening of anharmonic phonon–phonon interactions.

Collaboration


Dive into the J. Y. Luo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. T. Wu

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

H. H. Chang

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge