Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Z. Li is active.

Publication


Featured researches published by J. Z. Li.


Astronomy and Astrophysics | 2010

The Aquila prestellar core population revealed by Herschel

V. Könyves; P. André; A. Men'shchikov; N. Schneider; D. Arzoumanian; Sylvain Bontemps; M. Attard; F. Motte; P. Didelon; A. Maury; Alain Abergel; B. Ali; J.-P. Baluteau; J.-Ph. Bernard; L. Cambrésy; P. Cox; J. Di Francesco; A. M. di Giorgio; Matthew Joseph Griffin; Peter Charles Hargrave; M. Huang; Jason M. Kirk; J. Z. Li; Peter G. Martin; V. Minier; S. Molinari; G. Olofsson; S. Pezzuto; D. Russeil; Helene Roussel

The origin and possible universality of the stellar initial mass function (IMF) is a major issue in astrophysics. One of the main objectives of the Herschel Gould Belt Survey is to clarify the link between the prestellar core mass function (CMF) and the IMF. We present and discuss the core mass function derived from Herschel data for the large population of prestellar cores discovered with SPIRE and PACS in the Aquila Rift cloud complex at d ~ 260 pc. We detect a total of 541 starless cores in the entire ~11 deg^2 area of the field imaged at 70-500 micron with SPIRE/PACS. Most of these cores appear to be gravitationally bound, and thus prestellar in nature. Our Herschel results confirm that the shape of the prestellar CMF resembles the stellar IMF, with much higher quality statistics than earlier submillimeter continuum ground-based surveys.


The Astrophysical Journal | 2011

A 100 pc ELLIPTICAL AND TWISTED RING OF COLD AND DENSE MOLECULAR CLOUDS REVEALED BY HERSCHEL AROUND THE GALACTIC CENTER

S. Molinari; John Bally; Alberto Noriega-Crespo; M. Compiegne; J.-P. Bernard; D. Paradis; P. Martin; L. Testi; M. J. Barlow; T. J. T. Moore; R. Plume; B. M. Swinyard; A. Zavagno; L. Calzoletti; A. M. di Giorgio; D. Elia; F. Faustini; P. Natoli; M. Pestalozzi; S. Pezzuto; F. Piacentini; G. Polenta; D. Polychroni; E. Schisano; A. Traficante; M. Veneziani; Cara Battersby; Michael G. Burton; Sean J. Carey; Yasuo Fukui

Thermal images of cold dust in the Central Molecular Zone of the Milky Way, obtained with the far-infrared cameras on board the Herschel satellite, reveal a similar to 3 x 10(7) M-circle dot ring of dense and cold clouds orbiting the Galactic center. Using a simple toy model, an elliptical shape having semi-major axes of 100 and 60 pc is deduced. The major axis of this 100 pc ring is inclined by about 40 degrees with respect to the plane of the sky and is oriented perpendicular to the major axes of the Galactic Bar. The 100 pc ring appears to trace the system of stable x(2) orbits predicted for the barred Galactic potential. Sgr A* is displaced with respect to the geometrical center of symmetry of the ring. The ring is twisted and its morphology suggests a flattening ratio of 2 for the Galactic potential, which is in good agreement with the bulge flattening ratio derived from the 2MASS data.


Astronomy and Astrophysics | 2010

Filamentary structures and compact objects in the Aquila and Polaris clouds observed by Herschel

A. Men'shchikov; P. André; P. Didelon; V. Könyves; N. Schneider; F. Motte; Sylvain Bontemps; D. Arzoumanian; M. Attard; Alain Abergel; J.-P. Baluteau; J.-Ph. Bernard; L. Cambrésy; P. Cox; J. Di Francesco; A. M. di Giorgio; Matthew Joseph Griffin; Peter Charles Hargrave; M. Huang; Jason M. Kirk; J. Z. Li; P. G. Martin; V. Minier; M.-A. Miville-Deschênes; S. Molinari; G. Olofsson; S. Pezzuto; H. Roussel; D. Russeil; P. Saraceno

Our PACS and SPIRE images of the Aquila Rift and part of the Polaris Flare regions, taken during the science demonstration phase of Herschel discovered fascinating, omnipresent filamentary structures that appear to be physically related to compact cores. We briefly describe a new multi-scale, multi-wavelength source extraction method used to detect objects and measure their parameters in our Herschel images. All of the extracted starless cores (541 in Aquila and 302 in Polaris) appear to form in the long and very narrow filaments. With its combination of the far-IR resolution and sensitivity, Herschel directly reveals the filaments in which the dense cores are embedded; the filaments are resolved and have deconvolved widths of 35 arcsec in Aquila and 59 arcsec in Polaris (9000 AU in both regions). Our first results of observations with Herschel enable us to suggest that in general dense cores may originate in a process of fragmentation of complex networks of long, thin filaments, likely formed as a result of an interplay between gravity, interstellar turbulence, and magnetic fields. To unravel the roles of the processes, one has to obtain additional kinematic and polarization information; these follow-up observations are planned.


Astronomy and Astrophysics | 2010

Initial highlights of the HOBYS key program, the Herschel imaging survey of OB young stellar objects

F. Motte; A. Zavagno; Sylvain Bontemps; N. Schneider; M. Hennemann; J. Di Francesco; P. André; P. Saraceno; Matthew Joseph Griffin; A. Marston; Derek Ward-Thompson; G. J. White; V. Minier; A. Men'shchikov; T. Hill; Alain Abergel; L. D. Anderson; H. Aussel; Zoltan Balog; J.-P. Baluteau; J.-Ph. Bernard; P. Cox; T. Csengeri; L. Deharveng; P. Didelon; A. M. di Giorgio; Peter Charles Hargrave; M. Huang; Jason M. Kirk; S. J. Leeks

We present the initial highlights of the HOBYS key program, which are based on Herschel images of the Rosette molecular complex and maps of the RCW120 H ii region. Using both SPIRE at 250/350/500 μm and PACS at 70/160 μm or 100/160 μm, the HOBYS survey provides an unbiased and complete census of intermediate- to high-mass young stellar objects, some of which are not detected by Spitzer. Key core properties, such as bolometric luminosity and mass (as derived from spectral energy distributions), are used to constrain their evolutionary stages. We identify a handful of high-mass prestellar cores and show that their lifetimes could be shorter in the Rosette molecular complex than in nearby low-mass star-forming regions. We also quantify the impact of expanding H ii regions on the star formation process acting in both Rosette and RCW 120.


Astronomy and Astrophysics | 2012

The spine of the swan: a Herschel study of the DR21 ridge and filaments in Cygnus X

M. Hennemann; F. Motte; N. Schneider; P. Didelon; T. Hill; D. Arzoumanian; Sylvain Bontemps; T. Csengeri; P. André; V. Könyves; F. Louvet; A. Marston; A. Men’shchikov; V. Minier; Q. Nguyen Luong; P. Palmeirim; Nicolas Peretto; Marc Sauvage; A. Zavagno; L. D. Anderson; J.-Ph. Bernard; J. Di Francesco; D. Elia; J. Z. Li; P. G. Martin; S. Molinari; S. Pezzuto; D. Russeil; K. L. J. Rygl; E. Schisano

In order to characterise the cloud structures responsible for the formation of high-mass stars, we present Herschel observations of the DR21 environment. Maps of the column density and dust temperature unveil the structure of the DR21 ridge and several connected filaments. The ridge has column densities larger than 1e23/cm^2 over a region of 2.3 pc^2. It shows substructured column density profiles and branching into two major filaments in the north. The masses in the studied filaments range between 130 and 1400 Msun whereas the mass in the ridge is 15000 Msun. The accretion of these filaments onto the DR21 ridge, suggested by a previous molecular line study, could provide a continuous mass inflow to the ridge. In contrast to the striations seen in e.g., the Taurus region, these filaments are gravitationally unstable and form cores and protostars. These cores formed in the filaments potentially fall into the ridge. Both inflow and collisions of cores could be important to drive the observed high-mass star formation. The evolutionary gradient of star formation running from DR21 in the south to the northern branching is traced by decreasing dust temperature. This evolution and the ridge structure can be explained by two main filamentary components of the ridge that merged first in the south.


Astronomy and Astrophysics | 2010

The Herschel ? first look at protostars in the Aquila Rift ??

Sylvain Bontemps; P. André; V. Könyves; A. Men'shchikov; N. Schneider; A. Maury; Nicolas Peretto; D. Arzoumanian; M. Attard; F. Motte; V. Minier; P. Didelon; P. Saraceno; Alain Abergel; J.-P. Baluteau; J.-Ph. Bernard; L. Cambrésy; P. Cox; J. Di Francesco; A. M. Di Giorgo; Matthew Joseph Griffin; Peter Charles Hargrave; M. Huang; Jason M. Kirk; J. Z. Li; P. G. Martin; Bruno Merín; S. Molinari; G. Olofsson; S. Pezzuto

As part of the science demonstration phase of the Herschel mission of the Gould Belt Key Program, the Aquila Rift molecular complex has been observed. The complete ~ 3.3deg x 3.3deg imaging with SPIRE 250/350/500 micron and PACS 70/160 micron allows a deep investigation of embedded protostellar phases, probing of the dust emission from warm inner regions at 70 and 160 micron to the bulk of the cold envelopes between 250 and 500 micron. We used a systematic detection technique operating simultaneously on all Herschel bands to build a sample of protostars. Spectral energy distributions are derived to measure luminosities and envelope masses, and to place the protostars in an M_env - L_bol evolutionary diagram. The spatial distribution of protostars indicates three star-forming sites in Aquila, with W40/Sh2-64 HII region by far the richest. Most of the detected protostars are newly discovered. For a reduced area around the Serpens South cluster, we could compare the Herschel census of protostars with Spitzer results. The Herschel protostars are younger than in Spitzer with 7 Class 0 YSOs newly revealed by Herschel. For the entire Aquila field, we find a total of ~ 45-60 Class 0 YSOs discovered by Herschel. This confirms the global statistics of several hundred Class~0 YSOs that should be found in the whole Gould Belt survey.


Astronomy and Astrophysics | 2010

A Herschel study of the properties of starless cores in the Polaris Flare dark cloud region using PACS and SPIRE

Derek Ward-Thompson; Jason M. Kirk; P. André; P. Saraceno; P. Didelon; V. Könyves; N. Schneider; Alain Abergel; J.-P. Baluteau; J.-Ph. Bernard; Sylvain Bontemps; L. Cambrésy; P. Cox; J. Di Francesco; A. M. di Giorgio; Matthew Joseph Griffin; Peter Charles Hargrave; M. Huang; J. Z. Li; P. G. Martin; A. Men'shchikov; V. Minier; S. Molinari; F. Motte; G. Olofsson; S. Pezzuto; D. Russeil; Marc Sauvage; B. Sibthorpe; L. Spinoglio

The Polaris Flare cloud region contains a great deal of extended emission. It is at high declination and high Galactic latitude. It was previously seen strongly in IRAS Cirrus emission at 100 microns. We have detected it with both PACS and SPIRE on Herschel. We see filamentary and low-level structure. We identify the five densest cores within this structure. We present the results of a temperature, mass and density analysis of these cores. We compare their observed masses to their virial masses, and see that in all cases the observed masses lie close to the lower end of the range of estimated virial masses. Therefore, we cannot say whether they are gravitationally bound prestellar cores. Nevertheless, these are the best candidates to be potential prestellar cores in the Polaris cloud region.


Astronomy and Astrophysics | 2010

A Herschel study of YSO evolutionary stages and formation timelines in two fields of the Hi-GAL survey

D. Elia; E. Schisano; S. Molinari; Thomas P. Robitaille; Daniel Anglés-Alcázar; John Bally; Cara Battersby; M. Benedettini; N. Billot; L. Calzoletti; A. M. di Giorgio; F. Faustini; J. Z. Li; P. Martin; Larry Morgan; F. Motte; J. C. Mottram; P. Natoli; Luca Olmi; R. Paladini; F. Piacentini; M. Pestalozzi; S. Pezzuto; D. Polychroni; M. D. Smith; F. Strafella; Guy S. Stringfellow; L. Testi; M. A. Thompson; A. Traficante

We present a first study of the star-forming compact dust condensations revealed by Herschel in the two 2° × 2° Galactic Plane fields centered at [l, b] = [30°, 0°] and [l, b] =[59°, 0°] , respectively, and observed during the science demonstration phase for the Herschel Infrared GALactic plane survey (Hi-GAL) key-project. Compact source catalogs extracted for the two fields in the five Hi-GAL bands (70, 160, 250, 350 and 500 μm) were merged based on simple criteria of positional association and spectral energy distribution (SED) consistency into a final catalog which contains only coherent SEDs with counterparts in at least three adjacent Herschel bands. These final source lists contain 528 entries for the l = 30° field, and 444 entries for the = 59° field. The SED coverage has been augmented with ancillary data at 24 μm and 1.1 mm. SED modeling for the subset of 318 and 101 sources (in the two fields, respectively) for which the distance is known was carried out using both a structured star/disk/envelope radiative transfer model and a simple isothermal grey-body. Global parameters like mass, luminosity, temperature and dust properties have been estimated. The L_(bol)/M_(env) ratio spans four orders of magnitudes from values compatible with the pre-protostellar phase to embedded massive zero-age main sequence stars. Sources in the l = 59° field have on average lower L/M, possibly outlining an overall earlier evolutionary stage with respect to the sources in the l = 30° field. Many of these cores are actively forming high-mass stars, although the estimated core surface densities appear to be an order of magnitude below the 1 g cm^(-2) critical threshold for high-mass star formation.


Astronomy and Astrophysics | 2013

The Herschel view of the massive star-forming region NGC 6334

D. Russeil; N. Schneider; L. D. Anderson; A. Zavagno; S. Molinari; P. Persi; Sylvain Bontemps; F. Motte; V. Ossenkopf; P. André; D. Arzoumanian; J.-Ph. Bernard; Lise Deharveng; P. Didelon; J. Di Francesco; D. Elia; M. Hennemann; T. Hill; V. Könyves; J. Z. Li; P. G. Martin; Q. Nguyen Luong; Nicolas Peretto; S. Pezzuto; D. Polychroni; H. Roussel; K. L. J. Rygl; L. Spinoglio; L. Testi; J. Tigé

Aims: Fundamental to any theory of high-mass star formation are gravity and turbulence. Their relative importance, which probably changes during cloud evolution, is not known. By investigating the spatial and density structure of the high-mass star-forming complex NGC 6334 we aim to disentangle the contributions of turbulence and gravity. Methods: We used Herschel PACS and SPIRE imaging observations from the HOBYS key programme at wavelengths of 160, 250, 350, and 500 μm to construct dust temperature and column density maps. Using probability distribution functions (PDFs) of the column density determined for the whole complex and for four distinct sub-regions (distinguished on the basis of differences in the column density, temperature, and radiation field), we characterize the density structure of the complex. We investigate the spatial structure using the Δ-variance, which probes the relative amount of structure on different size scales and traces possible energy injection mechanisms into the molecular cloud. Results: The Δ-variance analysis suggests that the significant scales of a few parsec that were found are caused by energy injection due to expanding H ii regions, which are numerous, and by the lengths of filaments seen everywhere in the complex. The column density PDFs have a lognormal shape at low densities and a clearly defined power law at high densities for all sub-regions whose slope is linked to the exponent α of an equivalent spherical density distribution. In particular with α = 2.37, the central sub-region is largly dominated by gravity, caused by individual collapsing dense cores and global collapse of a larger region. The collapse is faster than free-fall (which would lead only to α = 2) and thus requires a more dynamic scenario (external compression, flows). The column density PDFs suggest that the different sub-regions are at different evolutionary stages, especially the central sub-region, which seems to be in a more evolved stage. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendix A is available in electronic form at http://www.aanda.org


Astronomy and Astrophysics | 2012

The M16 molecular complex under the influence of NGC6611. Herschel's perspective of the heating effect on the Eagle Nebula

T. Hill; F. Motte; P. Didelon; G. J. White; A. Marston; Q. Nguyen Luong; Sylvain Bontemps; P. André; N. Schneider; M. Hennemann; Marc Sauvage; J. Di Francesco; V. Minier; L. D. Anderson; J.-P. Bernard; D. Elia; Matthew Joseph Griffin; J. Z. Li; Nicolas Peretto; S. Pezzuto; D. Polychroni; H. Roussel; K. L. J. Rygl; E. Schisano; T. Sousbie; L. Testi; Derek Ward-Thompson; A. Zavagno

We present Herschel images from the HOBYS key program of the Eagle Nebula (M16) in the far-infrared and sub-millimetre, using the PACS and SPIRE cameras at 70{\mu}m, 160{\mu}m, 250{\mu}m, 350{\mu}m, 500{\mu}m. M16, home to the Pillars of Creation, is largely under the influence of the nearby NGC6611 high-mass star cluster. The Herschel images reveal a clear dust temperature gradient running away from the centre of the cavity carved by the OB cluster. We investigate the heating effect of NGC6611 on the entire M16 star-forming complex seen by Herschel including the diffuse cloud environment and the dense filamentary structures identified in this region. In addition, we interpret the three-dimensional geometry of M16 with respect to the nebula, its surrounding environment, and the NGC6611 cavity. The dust temperature and column density maps reveal a prominent eastern filament running north-south and away from the high-mass star-forming central region and the NGC6611 cluster, as well as a northern filament which extends around and away from the cluster. The dust temperature in each of these filaments decreases with increasing distance from the NGC6611 cluster, indicating a heating penetration depth of \sim 10 pc in each direction in 3 - 6 \times 10^{22} cm-2 column density filaments. We show that in high-mass star-forming regions OB clusters impact the temperature of future star-forming sites, modifying the initial conditions for collapse and effecting the evolutionary criteria of protostars developed from spectral energy distributions. Possible scenarios for the origin of the morphology seen in this region are discussed, including a western equivalent to the eastern filament, which was destroyed by the creation of the OB cluster and its subsequent winds and radiation.

Collaboration


Dive into the J. Z. Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jing-Hua Yuan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong-Li Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

M. Huang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sylvain Bontemps

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge