Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jaap Brouwer is active.

Publication


Featured researches published by Jaap Brouwer.


The EMBO Journal | 1994

RAD26, the functional S. cerevisiae homolog of the Cockayne syndrome B gene ERCC6.

A. J. Van Gool; Richard A. Verhage; S. M. A. Swagemakers; P. van de Putte; Jaap Brouwer; Christine Troelstra; D. Bootsma; Jan H.J. Hoeijmakers

Transcription‐coupled repair (TCR) is a universal sub‐pathway of the nucleotide excision repair (NER) system that is limited to the transcribed strand of active structural genes. It accomplishes the preferential elimination of transcription‐blocking DNA lesions and permits rapid resumption of the vital process of transcription. A defect in TCR is responsible for the rare hereditary disorder Cockayne syndrome (CS). Recently we found that mutations in the ERCC6 repair gene, encoding a putative helicase, underly the repair defect of CS complementation group B. Here we report the cloning and characterization of the Saccharomyces cerevisiae homolog of CSB/ERCC6, which we designate RAD26. A rad26 disruption mutant appears viable and grows normally, indicating that the gene does not have an essential function. In analogy with CS, preferential repair of UV‐induced cyclobutane pyrimidine dimers in the transcribed strand of the active RBP2 gene is severely impaired. Surprisingly, in contrast to the human CS mutant, yeast RAD26 disruption does not induce any UV‐, cisPt‐ or X‐ray sensitivity, explaining why it was not isolated as a mutant before. Recovery of growth after UV exposure was somewhat delayed in rad26. These findings suggest that TCR in lower eukaryotes is not very important for cell survival and that the global genome repair pathway of NER is the major determinant of cellular resistance to genotoxicity.


Nature | 2002

A Rad26-Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage.

Elies C. Woudstra; Chris Gilbert; Jane Fellows; Lars E. T. Jansen; Jaap Brouwer; Hediye Erdjument-Bromage; Paul Tempst; Jesper Q. Svejstrup

Eukaryotic cells use multiple, highly conserved mechanisms to contend with ultraviolet-light-induced DNA damage. One important response mechanism is transcription-coupled repair (TCR), during which DNA lesions in the transcribed strand of an active gene are repaired much faster than in the genome overall. In mammalian cells, defective TCR gives rise to the severe human disorder Cockaynes syndrome (CS). The best-studied CS gene, CSB, codes for a Swi/Snf-like DNA-dependent ATPase, whose yeast homologue is called Rad26 (ref. 4). Here we identify a yeast protein, termed Def1, which forms a complex with Rad26 in chromatin. The phenotypes of cells lacking DEF1 are consistent with a role for this factor in the DNA damage response, but Def1 is not required for TCR. Rather, def1 cells are compromised for transcript elongation, and are unable to degrade RNA polymerase II (RNAPII) in response to DNA damage. Our data suggest that RNAPII stalled at a DNA lesion triggers a coordinated rescue mechanism that requires the Rad26–Def1 complex, and that Def1 enables ubiquitination and proteolysis of RNAPII when the lesion cannot be rapidly removed by Rad26-promoted DNA repair.


Molecular and Cellular Biology | 1994

The RAD7 and RAD16 genes, which are essential for pyrimidine dimer removal from the silent mating type loci, are also required for repair of the nontranscribed strand of an active gene in Saccharomyces cerevisiae.

Richard A. Verhage; Anne-Marie Zeeman; N. De Groot; F. Gleig; Dang Duong Bang; P. van de Putte; Jaap Brouwer

The rad16 mutant of Saccharomyces cerevisiae was previously shown to be impaired in removal of UV-induced pyrimidine dimers from the silent mating-type loci (D. D. Bang, R. A. Verhage, N. Goosen, J. Brouwer, and P. van de Putte, Nucleic Acids Res. 20:3925-3931, 1992). Here we show that rad7 as well as rad7 rad16 double mutants have the same repair phenotype, indicating that the RAD7 and RAD16 gene products might operate in the same nucleotide excision repair subpathway. Dimer removal from the genome overall is essentially incomplete in these mutants, leaving about 20 to 30% of the DNA unrepaired. Repair analysis of the transcribed RPB2 gene shows that the nontranscribed strand is not repaired at all in rad7 and rad16 mutants, whereas the transcribed strand is repaired in these mutants at a fast rate similar to that in RAD+ cells. When the results obtained with the RPB2 gene can be generalized, the RAD7 and RAD16 proteins not only are essential for repair of silenced regions but also function in repair of nontranscribed strands of active genes in S. cerevisiae. The phenotype of rad7 and rad16 mutants closely resembles that of human xeroderma pigmentosum complementation group C (XP-C) cells, suggesting that RAD7 and RAD16 in S. cerevisiae function in the same pathway as the XPC gene in human cells. RAD4, which on the basis of sequence homology has been proposed to be the yeast XPC counterpart, seems to be involved in repair of both inactive and active yeast DNA, challenging the hypothesis that RAD4 and XPC are functional homologs.


Journal of Inorganic Biochemistry | 2002

Glutathione induces cellular resistance against cationic dinuclear platinum anticancer drugs

Bart A. J. Jansen; Jaap Brouwer; Jan Reedijk

The sulfur-containing tripeptide glutathione (GSH) is one of the most abundant molecules in cells. Elevated levels of GSH render some types of cancer cells resistant against well-known platinum anti-cancer drugs such as cisplatin and carboplatin. Platinum complexes are often very reactive towards the cysteine residue of GSH, which detoxifies these compounds by a rapid binding mechanism. Clearly, this resistance mechanism poses a severe obstacle to any new platinum drugs designed to overcome cisplatin resistance. In the present study the cytotoxicity of dinuclear platinum compounds of the 1,1/t,t type, as developed by Farrell, is determined in human ovarium A2780 cells and in the cisplatin-resistant cell line A2780cisR, which possesses elevated levels of GSH. Further, the effect of depletion of GSH levels by L-buthionine-S,R-sulfoximine (L-BSO) in A2780cisR was investigated. The experiments show that detoxification by GSH is an effective resistance mechanism against dinuclear platinum compounds. However, the dinuclear complexes are less sensitive towards detoxification compared to cisplatin. This is probably because of the rapid binding of dinuclear cationic complexes to DNA. Compared to cisplatin, the rapid binding to DNA reduces the time during which the drug molecules are exposed to GSH in the cytosol. The reaction of a representative dinuclear compound with glutathione (pH 7, 37 degrees C) was studied in detail by 195Pt NMR. The dinuclear complex BBR3005 ([trans-PtCl(2)(NH(3))(2)(mu-H(2)N(CH(2))(6)NH(2))](2+), abbreviated as 1,1/t,t n=6), follows different pathways in the reaction with GSH, depending on the molar ratio of the reactants. When reacted in stoichiometric amounts (1:1), first a chloride on each platinum is replaced by a sulfur, forming a PtN(3)S product at -2977 ppm. After 2-3 h, this intermediate reacts further to form a sulfur-bridged N(3)Pt-S-PtN(3) species as the main product at -2811 ppm. When BBR3005 is reacted with GSH in a ratio of 1:4, the sulfur-bridged species is not observed. Instead, the final product is trans-Pt(GS)(2)(NH(3))(2) (at -3215 ppm); the same product appears if GSH is reacted with trans-PtCl(2)(NH(3))(2). Apparently, GSH first replaces the chlorides and subsequently degrades the dinuclear compound by replacement of the diaminealkyl linker.


Molecular and Cellular Biology | 1996

Double mutants of Saccharomyces cerevisiae with alterations in global genome and transcription-coupled repair.

Richard A. Verhage; A. J. Van Gool; N. De Groot; J. H. J. Hoeijmakers; P. van de Putte; Jaap Brouwer

The nucleotide excision repair (NER) pathway is thought to consist of two subpathways: transcription-coupled repair, limited to the transcribed strand of active genes, and global genome repair for nontranscribed DNA strands. Recently we cloned the RAD26 gene, the Saccharomyces cerevisiae homolog of human CSB/ERCC6, a gene involved in transcription-coupled repair and the disorder Cockayne syndrome. This paper describes the analysis of yeast double mutants selectively affected in each NER subpathway. Although rad26 disruption mutants are defective in transcription-coupled repair, they are not UV sensitive. However, double mutants of RAD26 with the global genome repair determinants RAD7 and RAD16 appeared more UV sensitive than the single rad7 or rad16 mutants but not as sensitive as completely NER-deficient mutants. These findings unmask a role of RAD26 and transcription-coupled repair in UV survival, indicate that transcription-coupled repair and global genome repair are partially overlapping, and provide evidence for a residual NER modality in the double mutants. Analysis of dimer removal from the active RPB2 gene in the rad7/16 rad26 double mutants revealed (i) a contribution of the global genome repair factors Rad7p and Rad16p to repair of the transcribed strand, confirming the partial overlap between both NER subpathways, and (ii) residual repair specifically of the transcribed strand. To investigate the transcription dependence of this repair activity, strand-specific repair of the inducible GAL7 gene was investigated. The template strand of this gene was repaired only under induced conditions, pointing to a role for transcription in the residual repair in the double mutants and suggesting that transcription-coupled repair can to some extent operate independently from Rad26p. Our findings also indicate locus heterogeneity for the dependence of transcription-coupled repair on RAD26.


The EMBO Journal | 2000

Spt4 modulates Rad26 requirement in transcription‐coupled nucleotide excision repair

Lars E. T. Jansen; Hans den Dulk; Rosalba M. Brouns; Martina de Ruijter; Jourica A. Brandsma; Jaap Brouwer

The nucleotide excision repair machinery can be targeted preferentially to lesions in transcribed sequences. This mode of DNA repair is referred to as transcription‐coupled repair (TCR). In yeast, the Rad26 protein, which is the counterpart of the human Cockayne syndrome B protein, is implicated specifically in TCR. In a yeast strain genetically deprived of global genome repair, a deletion of RAD26 renders cells UV sensitive and displays a defect in TCR. Using a genome‐wide mutagenesis approach, we found that deletion of the SPT4 gene suppresses the rad26 defect. We show that suppression by the absence of Spt4 is specific for a rad26 defect and is caused by reactivation of TCR in a Rad26‐independent manner. Spt4 is involved in the regulation of transcription elongation. The absence of this regulation leads to transcription that is intrinsically competent for TCR. Our findings suggest that Rad26 acts as an elongation factor rendering transcription TCR competent and that its requirement can be modulated by Spt4.


Molecular and Cellular Biology | 1990

Differential repair of UV damage in rad mutants of Saccharomyces cerevisiae: a possible function of G2 arrest upon UV irradiation.

C Terleth; P Schenk; R Poot; Jaap Brouwer; P. van de Putte

After UV irradiation, the transcriptionally active MAT alpha locus in Saccharomyces cerevisiae is preferentially repaired compared with the inactive HML alpha locus. The effect of rad mutations from three different epistasis groups on differential repair was investigated. Three mutants, rad9, rad16, and rad24, were impaired in the removal of UV dimers from the inactive HML alpha locus, whereas they had generally normal repair of the active MAT alpha locus. Since RAD9 is necessary for G2 arrest after UV irradiation, we propose that the G2 stage plays a role in making the dimers accessible for repair, at least in the repressed HML alpha locus.


Chemistry & Biology | 2010

Activity-Based Profiling Reveals Reactivity of the Murine Thymoproteasome-Specific Subunit β5t

Bogdan I. Florea; Martijn Verdoes; Nan Li; Wouter A. van der Linden; Paul P. Geurink; Hans van den Elst; Tanja Hofmann; Arnoud H. de Ru; Peter A. van Veelen; Keiji Tanaka; Katsuhiro Sasaki; Shigeo Murata; Hans den Dulk; Jaap Brouwer; Ferry Ossendorp; Alexei F. Kisselev; Herman S. Overkleeft

Epithelial cells of the thymus cortex express a unique proteasome particle involved in positive T cell selection. This thymoproteasome contains the recently discovered beta5t subunit that has an uncharted activity, if any. We synthesized fluorescent epoxomicin probes that were used in a chemical proteomics approach, entailing activity-based profiling, affinity purification, and LC-MS identification, to demonstrate that the beta5t subunit is catalytically active in the murine thymus. A panel of established proteasome inhibitors showed that the broad-spectrum inhibitor epoxomicin blocks the beta5t activity and that the subunit-specific antagonists bortezomib and NC005 do not inhibit beta5t. We show that beta5t has a substrate preference distinct from beta5/beta5i that might explain how the thymoproteasome generates the MHC class I peptide repertoire needed for positive T cell selection.


Molecular and Cellular Biology | 1999

RNA polymerase II transcription suppresses nucleosomal modulation of UV-induced (6-4) photoproduct and cyclobutane pyrimidine dimer repair in yeast.

Marcel Tijsterman; Remko de Pril; Judith G. Tasseron-de Jong; Jaap Brouwer

ABSTRACT The nucleotide excision repair (NER) pathway is able to remove a wide variety of structurally unrelated lesions from DNA. NER operates throughout the genome, but the efficiencies of lesion removal are not the same for different genomic regions. Even within a single gene or DNA strand repair rates vary, and this intragenic heterogeneity is of considerable interest with respect to the mutagenic potential of carcinogens. In this study, we have analyzed the removal of the two major types of genotoxic DNA adducts induced by UV light, i.e., the pyrimidine (6-4)-pyrimidone photoproduct (6-4PP) and the cyclobutane pyrimidine dimer (CPD), from the Saccharomyces cerevisiae URA3 gene at nucleotide resolution. In contrast to the fast and uniform removal of CPDs from the transcribed strand, removal of lesions from the nontranscribed strand is generally less efficient and is modulated by the chromatin environment of the damage. Removal of 6-4PPs from nontranscribed sequences is also profoundly influenced by positioned nucleosomes, but this type of lesion is repaired at a much higher rate. Still, the transcribed strand is repaired preferentially, indicating that, as in the removal of CPDs, transcription-coupled repair predominates in the removal of 6-4PPs from transcribed DNA. The hypothesis that transcription machinery operates as the rate-determining damage recognition entity in transcription-coupled repair is supported by the observation that this pathway removes both types of UV photoproducts at equal rates without being profoundly influenced by the sequence or chromatin context.


European Journal of Inorganic Chemistry | 1999

A TETRANUCLEAR PLATINUM COMPOUND DESIGNED TO OVERCOME CISPLATIN RESISTANCE

Bart A. J. Jansen; Judith van der Zwan; Jan Reedijk; Hans den Dulk; Jaap Brouwer

The synthesis and characterisation of the first generation of a poly(propyleneimine) dendrimer DAB(PA)4, substituted with four trans-diamminechloroplatinum moieties is reported. The compound DAB(PA-tPt-Cl)4 was designed to overcome two problems often associated with cisplatin resistance in cancer cells: (i) deactivation of the platinum species by intracellular thiolates and (ii) improved repair of crosslinks with DNA. The four-armed molecule can be expected to form crosslinks with DNA that are very different from the adducts formed by cisplatin. Also, the tetranuclear compound has four leaving groups, while cisplatin has only two. Therefore, DAB(PA-tPt-Cl)4 would be less susceptible towards inactivation by reaction with intracellular thiolates. A reaction with an excess of the model nucleobase guanosine 5′-monophosphate (GMP) confirmed that the tetranuclear compound is capable of binding a maximum of four nucleobases. Therefore, the inactivation of one or two arms would still leave the molecule with enough reactivity to form crosslinks with DNA. Cytotoxicity tests were performed on two mouse leukemia L1210 cell lines, both sensitive and resistant towards cisplatin, and in seven human tumor cell lines. In all cell lines, the tetranuclear compound showed a low cytotoxicity. It is suggested that the low activity is related to the structure of the compound. Probably the high charge (+6) at physiological pH and its branched structure hamper the molecule in crossing the cell membranes.

Collaboration


Dive into the Jaap Brouwer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge