Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jaap D. van Buul is active.

Publication


Featured researches published by Jaap D. van Buul.


Journal of Immunology | 2007

ICAM-1-Mediated, Src- and Pyk2-Dependent Vascular Endothelial Cadherin Tyrosine Phosphorylation Is Required for Leukocyte Transendothelial Migration

Michael J. Allingham; Jaap D. van Buul; Keith Burridge

Leukocyte transendothelial migration (TEM) has been modeled as a multistep process beginning with rolling adhesion, followed by firm adhesion, and ending with either transcellular or paracellular passage of the leukocyte across the endothelial monolayer. In the case of paracellular TEM, endothelial cell (EC) junctions are transiently disassembled to allow passage of leukocytes. Numerous lines of evidence demonstrate that tyrosine phosphorylation of adherens junction proteins, such as vascular endothelial cadherin (VE-cadherin) and β-catenin, correlates with the disassembly of junctions. However, the role of tyrosine phosphorylation in the regulation of junctions during leukocyte TEM is not completely understood. Using human leukocytes and EC, we show that ICAM-1 engagement leads to activation of two tyrosine kinases, Src and Pyk2. Using phospho-specific Abs, we show that engagement of ICAM-1 induces phosphorylation of VE-cadherin on tyrosines 658 and 731, which correspond to the p120-catenin and β-catenin binding sites, respectively. These phosphorylation events require the activity of both Src and Pyk2. We find that inhibition of endothelial Src with PP2 or SU6656 blocks neutrophil transmigration (71.1 ± 3.8% and 48.6 ± 3.8% reduction, respectively), whereas inhibition of endothelial Pyk2 also results in decreased neutrophil transmigration (25.5 ± 6.0% reduction). Moreover, overexpression of the nonphosphorylatable Y658F or Y731F mutants of VE-cadherin impairs transmigration of neutrophils compared with overexpression of wild-type VE-cadherin (32.7 ± 7.1% and 38.8 ± 6.5% reduction, respectively). Our results demonstrate that engagement of ICAM-1 by leukocytes results in tyrosine phosphorylation of VE-cadherin, which is required for efficient neutrophil TEM.


Journal of Cell Biology | 2007

RhoG regulates endothelial apical cup assembly downstream from ICAM1 engagement and is involved in leukocyte trans-endothelial migration

Jaap D. van Buul; Michael J. Allingham; Thomas Samson; Julia Meller; Etienne Boulter; Rafael Garcia-Mata; Keith Burridge

During trans-endothelial migration (TEM), leukocytes use adhesion receptors such as intercellular adhesion molecule-1 (ICAM1) to adhere to the endothelium. In response to this interaction, the endothelium throws up dynamic membrane protrusions, forming a cup that partially surrounds the adherent leukocyte. Little is known about the signaling pathways that regulate cup formation. In this study, we show that RhoG is activated downstream from ICAM1 engagement. This activation requires the intracellular domain of ICAM1. ICAM1 colocalizes with RhoG and binds to the RhoG-specific SH3-containing guanine-nucleotide exchange factor (SGEF). The SH3 domain of SGEF mediates this interaction. Depletion of endothelial RhoG by small interfering RNA does not affect leukocyte adhesion but decreases cup formation and inhibits leukocyte TEM. Silencing SGEF also results in a substantial reduction in RhoG activity, cup formation, and TEM. Together, these results identify a new signaling pathway involving RhoG and its exchange factor SGEF downstream from ICAM1 that is critical for leukocyte TEM.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2010

Diabetes Mellitus Induces Bone Marrow Microangiopathy

Atsuhiko Oikawa; Mauro Siragusa; Federico Quaini; Giuseppe Mangialardi; Rajesh Katare; Andrea Caporali; Jaap D. van Buul; Floris van Alphen; Gallia Graiani; Gaia Spinetti; Nicolle Kraenkel; Lucia Prezioso; Costanza Emanueli; Paolo Madeddu

Objective—The impact of diabetes on the bone marrow (BM) microenvironment was not adequately explored. We investigated whether diabetes induces microvascular remodeling with negative consequence for BM homeostasis. Methods and Results—We found profound structural alterations in BM from mice with type 1 diabetes with depletion of the hematopoietic component and fatty degeneration. Blood flow (fluorescent microspheres) and microvascular density (immunohistochemistry) were remarkably reduced. Flow cytometry verified the depletion of MECA-32+ endothelial cells. Cultured endothelial cells from BM of diabetic mice showed higher levels of oxidative stress, increased activity of the senescence marker &bgr;-galactosidase, reduced migratory and network-formation capacities, and increased permeability and adhesiveness to BM mononuclear cells. Flow cytometry analysis of lineage− c-Kit+ Sca-1+ cell distribution along an in vivo Hoechst-33342 dye perfusion gradient documented that diabetes depletes lineage− c-Kit+ Sca-1+ cells predominantly in the low-perfused part of the marrow. Cell depletion was associated to increased oxidative stress, DNA damage, and activation of apoptosis. Boosting the antioxidative pentose phosphate pathway by benfotiamine supplementation prevented microangiopathy, hypoperfusion, and lineage− c-Kit+ Sca-1+ cell depletion. Conclusion—We provide novel evidence for the presence of microangiopathy impinging on the integrity of diabetic BM. These discoveries offer the framework for mechanistic solutions of BM dysfunction in diabetes.


Journal of Biological Chemistry | 2005

Proline-rich Tyrosine Kinase 2 (Pyk2) Mediates Vascular Endothelial-Cadherin-based Cell-Cell Adhesion by Regulating β-Catenin Tyrosine Phosphorylation

Jaap D. van Buul; Eloise C. Anthony; Mar Fernandez-Borja; Keith Burridge; Peter L. Hordijk

Vascular endothelial-cadherin (VE-cadherin) controls endothelial cell-cell adhesion and preserves endothelial integrity. In order to maintain endothelial barrier function, VE-cadherin function is tightly regulated through mechanisms that involve protein phosphorylation and cytoskeletal dynamics. Here, we show that loss of VE-cadherin function results in intercellular gap formation and a drop in electrical resistance of monolayers of primary human endothelial cells. Detailed analysis revealed that loss of endothelial cell-cell adhesion, induced by VE-cadherin-blocking antibodies, is preceded by and dependent on a rapid activation of Rac1 and increased production of reactive oxygen species. Moreover, VE-cadherin-associated β-catenin is tyrosine-phosphorylated upon loss of cell-cell contact. Finally, the redox-sensitive proline-rich tyrosine kinase 2 (Pyk2) is activated and recruited to cell-cell junctions following the loss of VE-cadherin homotypic adhesion. Conversely, the inhibition of Pyk2 activity in endothelial cells by the expression of CRNK (CADTK/CAKβ-related non-kinase), an N-terminal deletion mutant that acts in a dominant negative fashion, not only abolishes the increase in β-catenin tyrosine phosphorylation but also prevents the loss of endothelial cell-cell contact. These results implicate Pyk2 in the reduced cell-cell adhesion induced by the Rac-mediated production of ROS through the tyrosine phosphorylation of β-catenin. This signaling is initiated upon loss of VE-cadherin function and is important for our insight in the modulation of endothelial integrity.


Journal of Immunology | 2002

Migration of Human Hematopoietic Progenitor Cells Across Bone Marrow Endothelium Is Regulated by Vascular Endothelial Cadherin

Jaap D. van Buul; Carlijn Voermans; Veronique van den Berg; Eloise C. Anthony; Frederik P. J. Mul; Sandra van Wetering; C. Ellen van der Schoot; Peter L. Hordijk

The success of stem cell transplantation depends on the ability of i.v. infused stem cells to engraft the bone marrow, a process referred to as homing. Efficient homing requires migration of CD34+ cells across the bone marrow endothelium, most likely through the intercellular junctions. In this study, we show that loss of vascular endothelial (VE)-cadherin-mediated endothelial cell-cell adhesion increases the permeability of monolayers of human bone marrow endothelial cells (HBMECs) and stimulates the transendothelial migration of CD34+ cells in response to stromal cell-derived factor-1α. Stromal cell-derived factor-1α-induced migration was dependent on VCAM-1 and ICAM-1, even in the absence of VE-cadherin function. Cross-linking of ICAM-1 to mimic the leukocyte-endothelium interaction induced actin stress fiber formation but did not induce loss of endothelial integrity, whereas cross-linking of VCAM-1 increased the HBMEC permeability and induced gaps in the monolayer. In addition, VCAM-1-mediated gap formation in HBMEC was accompanied by and dependent on the production of reactive oxygen species. These data suggest that modulation of VE-cadherin function directly affects the efficiency of transendothelial migration of CD34+ cells and that activation of ICAM-1 and, in particular, VCAM-1 plays an important role in this process through reorganization of the endothelial actin cytoskeleton and by modulating the integrity of the bone marrow endothelium through the production of reactive oxygen species.


Journal of Biological Chemistry | 2005

Proline-rich tyrosine kinase 2 (PYK2) mediates VE-cadherin-based cell-cell adhesion by regulating β-catenine tyrosine phosphorylation

Jaap D. van Buul; Eloise C. Anthony; Mar Fernandez-Borja; Keith Burridge; Peter L. Hordijk

Vascular endothelial-cadherin (VE-cadherin) controls endothelial cell-cell adhesion and preserves endothelial integrity. In order to maintain endothelial barrier function, VE-cadherin function is tightly regulated through mechanisms that involve protein phosphorylation and cytoskeletal dynamics. Here, we show that loss of VE-cadherin function results in intercellular gap formation and a drop in electrical resistance of monolayers of primary human endothelial cells. Detailed analysis revealed that loss of endothelial cell-cell adhesion, induced by VE-cadherin-blocking antibodies, is preceded by and dependent on a rapid activation of Rac1 and increased production of reactive oxygen species. Moreover, VE-cadherin-associated β-catenin is tyrosine-phosphorylated upon loss of cell-cell contact. Finally, the redox-sensitive proline-rich tyrosine kinase 2 (Pyk2) is activated and recruited to cell-cell junctions following the loss of VE-cadherin homotypic adhesion. Conversely, the inhibition of Pyk2 activity in endothelial cells by the expression of CRNK (CADTK/CAKβ-related non-kinase), an N-terminal deletion mutant that acts in a dominant negative fashion, not only abolishes the increase in β-catenin tyrosine phosphorylation but also prevents the loss of endothelial cell-cell contact. These results implicate Pyk2 in the reduced cell-cell adhesion induced by the Rac-mediated production of ROS through the tyrosine phosphorylation of β-catenin. This signaling is initiated upon loss of VE-cadherin function and is important for our insight in the modulation of endothelial integrity.


Current Opinion in Hematology | 2005

Trading spaces: Rap, Rac, and Rho as architects of transendothelial migration

Erika S. Wittchen; Jaap D. van Buul; Keith Burridge; Rebecca A. Worthylake

Purpose of reviewThis review focuses on recent developments in understanding regulation of leukocyte transendothelial migration by small GTPase signaling. Recent findingsNew studies are refining the model for GTPase regulation of leukocyte-endothelial cell interactions that occur during leukocyte transmigration. An emerging theme is that the endothelial cell is an active participant in this process; an example of this is the identification of a novel leukocyte docking structure. The role of second messengers such as reactive oxygen species downstream and the involvement of kinases such as Pyk2 and Tec kinases upstream of GTPase activation is becoming appreciated. In the leukocyte, finer distinctions between closely related GTPases like Rac1 and Rac2 are being made, and a new role for RhoH has been characterized. Finally, the focus on Rap1 as a key regulator of leukocyte integrin-dependent adhesion is expanding to include roles in endothelial cell-cell adhesion and junctional regulation during transmigration. SummaryUnderstanding the complex series of events involved in cell-cell interactions during leukocyte transendothelial migration is a prerequisite for designing novel therapies to treat clinical conditions in which an inappropriate inflammatory response leads to disease. A discussion is provided of recent developments in the molecular regulation of leukocyte recruitment.


Journal of Biological Chemistry | 2008

Filamin B mediates ICAM-1-driven leukocyte transendothelial migration

Edwin Kanters; Jos van Rijssel; Paul J. Hensbergen; David Hondius; Frederik P. J. Mul; André M. Deelder; Arnoud Sonnenberg; Jaap D. van Buul; Peter L. Hordijk

During inflammation, the endothelium mediates rolling and firm adhesion of activated leukocytes. Integrin-mediated adhesion to endothelial ligands of the Ig-superfamily induces intracellular signaling in endothelial cells, which promotes leukocyte transendothelial migration. We identified the actin cross-linking molecule filamin B as a novel binding partner for intracellular adhesion molecule-1 (ICAM-1). Immune precipitation as well as laser scanning confocal microscopy confirmed the specific interaction and co-localization of endogenous filamin B with ICAM-1. Importantly, clustering of ICAM-1 promotes the ICAM-1-filamin B interaction. To investigate the functional consequences of filamin B binding to ICAM-1, we used small interfering RNA to reduce filamin B expression in ICAM-1-GFP expressing HeLa cells. We found that filamin B is required for the lateral mobility of ICAM-1 and for ICAM-1-induced transmigration of leukocytes. Reducing filamin B expression in primary human endothelial cells resulted in reduced recruitment of ICAM-1 to endothelial docking structures, reduced firm adhesion of the leukocytes to the endothelium, and inhibition of transendothelial migration. In conclusion, this study identifies filamin B as a molecular linker that mediates ICAM-1-driven transendothelial migration.


Circulation | 2016

Oxidized Phospholipids on Lipoprotein(a) Elicit Arterial Wall Inflammation and an Inflammatory Monocyte Response in Humans

Fleur M. van der Valk; Siroon Bekkering; Jeffrey Kroon; Calvin Yeang; Jan Van den Bossche; Jaap D. van Buul; Amir Ravandi; Aart J. Nederveen; Hein J. Verberne; Corey A. Scipione; Max Nieuwdorp; Leo A. B. Joosten; Mihai G. Netea; Marlys L. Koschinsky; Joseph L. Witztum; Sotirios Tsimikas; Niels P. Riksen; Erik S.G. Stroes

Background: Elevated lipoprotein(a) [Lp(a)] is a prevalent, independent cardiovascular risk factor, but the underlying mechanisms responsible for its pathogenicity are poorly defined. Because Lp(a) is the prominent carrier of proinflammatory oxidized phospholipids (OxPLs), part of its atherothrombosis might be mediated through this pathway. Methods: In vivo imaging techniques including magnetic resonance imaging, 18F-fluorodeoxyglucose uptake positron emission tomography/computed tomography and single-photon emission computed tomography/computed tomography were used to measure subsequently atherosclerotic burden, arterial wall inflammation, and monocyte trafficking to the arterial wall. Ex vivo analysis of monocytes was performed with fluorescence-activated cell sorter analysis, inflammatory stimulation assays, and transendothelial migration assays. In vitro studies of the pathophysiology of Lp(a) on monocytes were performed with an in vitro model for trained immunity. Results: We show that subjects with elevated Lp(a) (108 mg/dL [50–195 mg/dL]; n=30) have increased arterial inflammation and enhanced peripheral blood mononuclear cells trafficking to the arterial wall compared with subjects with normal Lp(a) (7 mg/dL [2–28 mg/dL]; n=30). In addition, monocytes isolated from subjects with elevated Lp(a) remain in a long-lasting primed state, as evidenced by an increased capacity to transmigrate and produce proinflammatory cytokines on stimulation (n=15). In vitro studies show that Lp(a) contains OxPL and augments the proinflammatory response in monocytes derived from healthy control subjects (n=6). This effect was markedly attenuated by inactivating OxPL on Lp(a) or removing OxPL on apolipoprotein(a). Conclusions: These findings demonstrate that Lp(a) induces monocyte trafficking to the arterial wall and mediates proinflammatory responses through its OxPL content. These findings provide a novel mechanism by which Lp(a) mediates cardiovascular disease. Clinical Trial Registration: URL: http://www.trialregister.nl. Unique identifier: NTR5006 (VIPER Study).


Molecular Biology of the Cell | 2012

The Rho-guanine nucleotide exchange factor Trio controls leukocyte transendothelial migration by promoting docking structure formation

Jos van Rijssel; Jeffrey Kroon; Mark Hoogenboezem; Floris van Alphen; Renske J. de Jong; Elena Kostadinova; Dirk Geerts; Peter L. Hordijk; Jaap D. van Buul

Neutrophils induce endothelial docking structures prior to crossing the blood vessel wall. The Rho guanine nucleotide exchange factor Trio regulates the formation of these structures through ICAM-1 clustering in a filamin-dependent fashion. We show that Trio is a crucial mediator of the signaling pathway that controls leukocyte extravasation through docking structure formation.

Collaboration


Dive into the Jaap D. van Buul's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keith Burridge

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Dirk Geerts

Erasmus University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge