Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jaap M. Middeldorp is active.

Publication


Featured researches published by Jaap M. Middeldorp.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Functional delivery of viral miRNAs via exosomes

D. Michiel Pegtel; Katherine Cosmopoulos; David A. Thorley-Lawson; Monique van Eijndhoven; Erik S. Hopmans; Jelle L. Lindenberg; Tanja D. de Gruijl; Thomas Wurdinger; Jaap M. Middeldorp

Noncoding regulatory microRNAs (miRNAs) of cellular and viral origin control gene expression by repressing the translation of mRNAs into protein. Interestingly, miRNAs are secreted actively through small vesicles called “exosomes” that protect them from degradation by RNases, suggesting that these miRNAs may function outside the cell in which they were produced. Here we demonstrate that miRNAs secreted by EBV-infected cells are transferred to and act in uninfected recipient cells. Using a quantitative RT-PCR approach, we demonstrate that mature EBV-encoded miRNAs are secreted by EBV-infected B cells through exosomes. These EBV-miRNAs are functional because internalization of exosomes by MoDC results in a dose-dependent, miRNA-mediated repression of confirmed EBV target genes, including CXCL11/ITAC, an immunoregulatory gene down-regulated in primary EBV-associated lymphomas. We demonstrate that throughout coculture of EBV-infected B cells EBV-miRNAs accumulate in noninfected neighboring MoDC and show that this accumulation is mediated by transfer of exosomes. Thus, the exogenous EBV-miRNAs transferred through exosomes are delivered to subcellular sites of gene repression in recipient cells. Finally, we show in peripheral blood mononuclear cells from patients with increased EBV load that, although EBV DNA is restricted to the circulating B-cell population, EBV BART miRNAs are present in both B-cell and non-B-cell fractions, suggestive of miRNA transfer. Taken together our findings are consistent with miRNA-mediated gene silencing as a potential mechanism of intercellular communication between cells of the immune system that may be exploited by the persistent human γ-herpesvirus EBV.


Proceedings of the National Academy of Sciences of the United States of America | 2004

Demonstration of the Burkitt's lymphoma Epstein-Barr virus phenotype in dividing latently infected memory cells in vivo

Donna Hochberg; Jaap M. Middeldorp; Michelle D. Catalina; John L. Sullivan; Katherine Luzuriaga; David A. Thorley-Lawson

Epstein-Barr virus (EBV) is a herpesvirus that establishes a lifelong, persistent infection. It was first discovered in the tumor Burkitts lymphoma (BL). Despite intensive study, the role of EBV in BL remains enigmatic. One striking feature of the tumor is the unique pattern of viral latent protein expression, which is restricted to EBV-encoded nuclear antigen (EBNA) 1. EBNA1 is required to maintain the viral genome but is not recognized by cytotoxic T cells. Consequently, it was proposed that this expression pattern was used by latently infected B cells in vivo. This would be the site of long-term, persistent infection by the virus and, by implication, the progenitor of BL. We now know that EBV persists in memory B cells in the peripheral blood and that BL is a tumor of memory cells. However, a normal B cell expressing EBNA1 alone has been elusive. Here we show that most infected cells in the blood express no detectable latent mRNA or proteins. The exception is that when infected cells divide they express EBNA1 only. This is the first detection of the BL viral phenotype in a normal, infected B cell in vivo. It suggests that BL may be a tumor of a latently infected memory B cell that is stuck proliferating because it is a tumor and, therefore, constitutively expressing only EBNA1.


Journal of Virology | 2001

Differential Immunogenicity of Epstein-Barr Virus Latent-Cycle Proteins for Human CD4+ T-Helper 1 Responses

Ann M. Leen; Pauline Meij; Irina Redchenko; Jaap M. Middeldorp; Elisabeth Bloemena; Alan B. Rickinson; Neil Blake

ABSTRACT Human CD4+ T-helper 1 cell responses to Epstein-Barr virus (EBV) infection are likely to be important in the maintenance of virus-specific CD8+ memory and/or as antiviral effectors in their own right. The present work has used overlapping peptides as stimulators of gamma interferon release (i) to identify CD4+ epitopes within four EBV latent-cycle proteins, i.e., the nuclear antigens EBNA1 and EBNA3C and the latent membrane proteins LMP1 and LMP2, and (ii) to determine the frequency and magnitude of memory responses to these proteins in healthy virus carriers. Responses to EBNA1 and EBNA3C epitopes were detected in the majority of donors, and in the case of EBNA1, their antigen specificity was confirmed by in vitro reactivation and cloning of CD4+ T cells using protein-loaded dendritic cell stimulators. By contrast, responses to LMP1 and LMP2 epitopes were seen much less frequently. EBV latent-cycle proteins therefore display a marked hierarchy of immunodominance for CD4+ T-helper 1 cells (EBNA1, EBNA3C ≫ LMP1, LMP2) which is different from that identified for the same proteins with respect to CD8+-T-cell responses (EBNA3C > EBNA1 > LMP2 ≫ LMP1). Furthermore, the range of CD4+ memory T-cell frequencies in peripheral blood of healthy virus carriers was noticeably lower and narrower than the corresponding range of latent antigen-specific CD8+-T-cell frequencies.


Communicative & Integrative Biology | 2010

Exosomes: Fit to deliver small RNA

Anoek Zomer; Tineke Vendrig; Erik S. Hopmans; Monique van Eijndhoven; Jaap M. Middeldorp; D. Michiel Pegtel

Exosomes are specialized membranous nano-sized vesicles derived from endocytic compartments that are released by many cell types. Microvesicles are distinctive from exosomes in that they are produced by shedding of the plasmamembrane and usually larger in size (>1 µm). Exosome biogenesis involves the tightly controlled process of inward budding from the limiting membrane of multivesicular bodies (MVBs). This results in numerous intraluminal vesicles in the lumen of MVBs that contain distinct protein repertoires. It has been suggested that microvesicles shed by certain tumor cells hold functional messenger RNA (mRNA) that may promote tumor progression. We discovered that purified exosomes contain functional microRNAs (miRNAs) and small RNA, but detected little mRNA. Although a clear and decisive distinction between microvesicles and exosomes cannot be made and different subsets of exosomes exist, we speculate that exosomes are specialized in carrying small RNA including the class 22-25 nucleotide regulatory miRNAs. To demonstrate this we developed a co-culture system and found that exosomes are continuously secreted and transferred from Epstein Barr virus (EBV)-infected cells to uninfected neighboring cells. Throughout exosome transfer, the exogenous EBV-encoded miRNAs were delivered to subcellular sites of miRNA-mediated gene repression. Additionally, we found evidence that mature miRNAs are transferred between circulating cells in humans, since we detected EBV-miRNAs in non-infected cells in the peripheral blood of patients that include monocytes and T cells. In this addendum we discuss these findings in the context of recently published papers that advanced our current knowledge of exosome physiology, (mi)RNA function and intercellular RNA transfer. Based on this information we propose that an intercellular (miRNA-based) mode of signal transmission may be well suited in controlling space-confined processes such as the initiation of immune responses in the secondary (peripheral) lymphoid tissues or in a tumor microenvironment. Deciphering the molecular mechanism(s) that control small RNA loading into exosomes and transfer to recipient cells in vitro will provide new evidence for the physiological relevance of vesicle-mediated intercellular communication in vivo.Exosomes are specialized membranous nano-sized vesicles derived from endocytic compartments that are released by many cell types. Microvesicles are distinctive from exosomes in that they are produced by shedding of the plasmamembrane and usually larger in size (>1µm). Exosome biogenesis involves the tightly controlled process of inward budding from the limiting membrane of multivesicular bodies (MVBs). This results in numerous intraluminal vesicles in the lumen of MVBs that contain distinct protein repertoires. It has been suggested that microvesicles shed by certain tumor cells hold functional messenger RNA (mRNA) that may promote tumor progression. We discovered that purified exosomes contain functional microRNAs (miRNAs) and small RNA, but detected little mRNA. Although a clear and decisive distinction between microvesicles and exosomes cannot be made and different subsets of exosomes exist, we speculate that exosomes are specialized in carrying small RNA including the class 22-25 nt regulatory microRNAs. To demonstrate this we developed a co-culture system and found that exosomes are continuously secreted and transferred from Epstein Barr virus (EBV)-infected cells to uninfected neighboring cells. Throughout exosome transfer, the exogenous EBV-encoded miRNAs were delivered to subcellular sites of miRNA-mediated gene repression. Additionally, we found evidence that mature miRNAs are transferred between circulating cells in humans, since we detected EBV-miRNAs in non-infected cells in the peripheral blood of patients that include monocytes and T cells. In this addendum we discuss these findings in the context of recently published papers that advanced our current knowledge of exosome physiology, (mi)RNA function and intercellular RNA transfer. Based on this information we propose that an intercellular (miRNA-based) mode of signal transmission may be well suited in controlling space-confined processes such as the initiation of immune responses in the secondary (peripheral) lymphoid tissues or in a tumor microenvironment. Deciphering the molecular mechanism(s) that control small RNA loading into exosomes and transfer to recipient cells in vitro will provide new evidence for the physiological relevance of vesicle-mediated intercellular communication in vivo.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Host shutoff during productive Epstein–Barr virus infection is mediated by BGLF5 and may contribute to immune evasion

Martin Rowe; Britt A. Glaunsinger; Daphne van Leeuwen; Jianmin Zuo; David Sweetman; Don Ganem; Jaap M. Middeldorp; Emmanuel J. H. J. Wiertz; Maaike E. Ressing

Relatively little is known about immune evasion during the productive phase of infection by the γ1-herpesvirus Epstein–Barr virus (EBV). The use of a unique system to isolate cells in lytic cycle allowed us to identify a host shutoff function operating in productively EBV-infected B cells. This impairment of protein synthesis results from mRNA degradation induced upon expression of the early lytic-cycle gene product BGLF5. Recently, a γ2-herpesvirus, Kaposi sarcoma herpesvirus, has also been shown to encode a host shutoff function, indicating that host shutoff appears to be a general feature of γ-herpesviruses. One of the consequences of host shutoff is a block in the synthesis of HLA class I and II molecules, reflected by reduced levels of these antigen-presenting complexes at the surface of cells in EBV lytic cycle. This effect could lead to escape from T cell recognition and elimination of EBV-producing cells, thereby allowing generation of viral progeny in the face of memory T cell responses.


BMC Cancer | 2006

Exosomes released by EBV-infected nasopharyngeal carcinoma cells convey the viral Latent Membrane Protein 1 and the immunomodulatory protein galectin 9

Cécile Keryer-Bibens; Catherine Pioche-Durieu; Cécile Villemant; Sylvie Souquere; Nozomu Nishi; Mitsuomi Hirashima; Jaap M. Middeldorp; Pierre Busson

BackgroundNasopharyngeal carcinomas (NPC) are consistently associated with the Epstein-Barr virus (EBV). Their malignant epithelial cells contain the viral genome and express several antigenic viral proteins. However, the mechanisms of immune escape in NPCs are still poorly understood. EBV-transformed B-cells have been reported to release exosomes carrying the EBV-encoded latent membrane protein 1 (LMP1) which has T-cell inhibitory activity. Although this report suggested that NPC cells could also produce exosomes carrying immunosuppressive proteins, this hypothesis has remained so far untested.MethodsMalignant epithelial cells derived from NPC xenografts – LMP1-positive (C15) or negative (C17) – were used to prepare conditioned culture medium. Various microparticles and vesicles released in the culture medium were collected and fractionated by differential centrifugation. Exosomes collected in the last centrifugation step were further purified by immunomagnetic capture on beads carrying antibody directed to HLA class II molecules. Purified exosomes were visualized by electron microscopy and analysed by western blotting. The T-cell inhibitory activities of recombinant LMP1 and galectin 9 were assessed on peripheral blood mononuclear cells activated by CD3/CD28 cross-linking.ResultsHLA-class II-positive exosomes purified from C15 and C17 cell supernatants were containing either LMP1 and galectin 9 (C15) or galectin 9 only (C17). Recombinant LMP1 induced a strong inhibition of T-cell proliferation (IC50 = 0.17 nM). In contrast recombinant galectin 9 had a weaker inhibitory effect (IC50 = 46 nM) with no synergy with LMP1.ConclusionThis study provides the proof of concept that NPC cells can release HLA class-II positive exosomes containing galectin 9 and/or LMP1. It confirms that the LMP1 molecule has intrinsic T-cell inhibitory activity. These findings will encourage investigations of tumor exosomes in the blood of NPC patients and assessment of their effects on various types of target cells.


Critical Reviews in Oncology Hematology | 2003

Pathogenic roles for Epstein /Barr virus (EBV) gene products in EBV-associated proliferative disorders

Jaap M. Middeldorp; Antoinette A. T. P. Brink; Adriaan J. C. van den Brule; Chris J. L. M. Meijer

Epstein-Barr virus (EBV) is associated with a still growing spectrum of clinical disorders, ranging from acute and chronic inflammatory diseases to lymphoid and epithelial malignancies. Based on a combination of in vitro and in vivo findings, EBV is thought to contribute in the pathogenesis of these diseases. The different EBV gene expression patterns in the various disorders, suggest different EBV-mediated pathogenic mechanisms. In the following pages, an overview of the biology of EBV-infection is given and functional aspects of EBV-proteins are discussed and their putative role in the various EBV-associated disorders is described. EBV gene expression patterns and possible pathogenic mechanisms are discussed. In addition, expression of the cellular genes upregulated by EBV in vitro is discussed, and a comparison with the in vivo situation is made.


Pediatric Research | 2004

Cytomegalovirus (CMV) inactivation in breast milk: reassessment of pasteurization and freeze-thawing.

Klaus Hamprecht; Jens Maschmann; Denise Müller; Klaus Dietz; Ingo Besenthal; Rangmar Goelz; Jaap M. Middeldorp; Christian P. Speer; Gerhard Jahn

Breast-feeding mothers frequently transmit cytomegalovirus (CMV) to preterm infants of very low birth weight. Current recommendations for prevention of virus transmission are based on data published 20 y ago in the context of human milk banking. Two recent clinical trials examined storage of breast milk at −20°C to reduce virus transmission. However, in both studies, CMV transmission occurred. Using sensitive tools like quantitative PCR, CMV pp67 late mRNA assay, and a high-speed, centrifugation-based microculture assay for quantification of CMV infectivity, we reassessed the virological and biochemical characteristics of freeze-storing breast milk at −20°C, compared it with traditional Holder pasteurization (30 min at 62.5°C), and a new short-term pasteurization (5 s at 72°C) based on the generation of a milk film. Both heat treatment procedures were able to destroy viral infectivity and pp67 RNA completely. Preliminary results showed short-term heat inactivation below 72°C was less harmful in reducing the activity of marker enzymes than Holder pasteurization. Freezing breast milk preserved the biochemical and immunologic quality of the milk; however, late viral RNA and viral infectivity was also preserved. Compared with viral DNA, CMV-RNA more directly reflects infectious CMV in human milk samples. Further studies are necessary to evaluate short-term heat treatment below 72°C as an effective tool for prevention of CMV transmission.


Journal of Immunology | 2000

Direct Immunosuppressive Effects of EBV-Encoded Latent Membrane Protein 1

Danny F. Dukers; Pauline Meij; Marcel B. H. J. Vervoort; Wim Vos; Rik J. Scheper; Chris J. L. M. Meijer; Elisabeth Bloemena; Jaap M. Middeldorp

In neoplastic cells of EBV-positive lymphoid malignancies latent membrane protein (LMP1) is expressed. Because no adequate cellular immune response can be detected against LMP1, we investigated whether LMP1 had a direct effect on T lymphocyte activation. In this study we show that nanogram amounts of purified recombinant LMP1 (rLMP1) strongly suppresses activation of T cells. By sequence alignment two sequences (LALLFWL and LLLLAL) in the first transmembrane domain of LMP1 were identified showing strong homology to the immunosuppressive domain (LDLLFL) of the retrovirus-encoded transmembrane protein p15E. The effects of rLMP1 and LMP1-derived peptides were tested in T cell proliferation and NK cytotoxicity assays and an Ag-induced IFN-γ release enzyme-linked immunospot assay. LMP1 derived LALLFWL peptides showed strong inhibition of T cell proliferation and NK cytotoxicity, while acetylated LALLFWL peptides had an even stronger effect. In addition, Ag-specific IFN-γ release was severely inhibited. To exert immunosuppressive effects in vivo, LMP1 has to be excreted from the cells. Indeed, LMP1 was detected in supernatant of EBV-positive B cell lines (LCL), and differential centrifugation in combination with Western blot analysis of the pellets indicated that LMP1 is probably secreted by LCL in the form of exosomes. The amount of secreted LMP1 in B cell cultures is well below the immunosuppressive level observed with rLMP1. Our results demonstrate direct immunosuppressive properties of LMP1 (fragments) and suggest that EBV-positive tumor cells may actively secrete LMP1 and thus mediate immunosuppressive effects on tumor-infiltrating lymphocytes. Moreover, we demonstrate, for the first time, that transmembrane protein-mediated immunosuppression is not solely restricted to RNA tumor viruses, but can also be found in DNA tumor viruses.


Journal of Virology | 2004

The Amino Terminus of Epstein-Barr Virus (EBV) Nuclear Antigen 1 Contains AT Hooks That Facilitate the Replication and Partitioning of Latent EBV Genomes by Tethering Them to Cellular Chromosomes

John Sears; Maki Ujihara; Samantha Wong; Christopher J. Ott; Jaap M. Middeldorp; Ashok Aiyar

ABSTRACT During latency, Epstein-Barr virus (EBV) is stably maintained as a circular plasmid that is replicated once per cell cycle and partitioned at mitosis. Both these processes require a single viral protein, EBV nuclear antigen 1 (EBNA1), which binds two clusters of cognate binding sites within the latent viral origin, oriP. EBNA1 is known to associate with cellular metaphase chromosomes through chromosome-binding domains within its amino terminus, an association that we have determined to be required not only for the partitioning of oriP plasmids but also for their replication. One of the chromosome-binding domains of EBNA1 associates with a cellular nucleolar protein, EBP2, and it has been proposed that this interaction underlies that ability of EBNA1 to bind metaphase chromosomes. Here we demonstrate that EBNA1s chromosome-binding domains are AT hooks, a DNA-binding motif found in a family of proteins that bind the scaffold-associated regions on metaphase chromosomes. Further, we demonstrate that the ability of EBNA1 to stably replicate and partition oriP plasmids correlates with its AT hook activity and not its association with EBP2. Finally, we examine the contributions of EBP2 toward the ability of EBNA1 to associate with metaphase chromosomes in human cells, as well as support the replication and partitioning of oriP plasmids in human cells. Our results indicate that it is unlikely that EBP2 directly mediates these activities of EBNA1 in human cells.

Collaboration


Dive into the Jaap M. Middeldorp's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Astrid E. Greijer

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

I. Bing Tan

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Michiel Pegtel

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elisabeth Bloemena

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Hedy Juwana

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge