Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jaap S. Sinninghe Damsté is active.

Publication


Featured researches published by Jaap S. Sinninghe Damsté.


Nature | 2003

Anaerobic ammonium oxidation by anammox bacteria in the Black Sea

Marcel M. M. Kuypers; A. Olav Sliekers; Gaute Lavik; Markus Schmid; Bo Barker Jørgensen; J. Gijs Kuenen; Jaap S. Sinninghe Damsté; Marc Strous; Mike S. M. Jetten

The availability of fixed inorganic nitrogen (nitrate, nitrite and ammonium) limits primary productivity in many oceanic regions. The conversion of nitrate to N2 by heterotrophic bacteria (denitrification) is believed to be the only important sink for fixed inorganic nitrogen in the ocean. Here we provide evidence for bacteria that anaerobically oxidize ammonium with nitrite to N2 in the worlds largest anoxic basin, the Black Sea. Phylogenetic analysis of 16S ribosomal RNA gene sequences shows that these bacteria are related to members of the order Planctomycetales performing the anammox (anaerobic ammonium oxidation) process in ammonium-removing bioreactors. Nutrient profiles, fluorescently labelled RNA probes, 15N tracer experiments and the distribution of specific ‘ladderane’ membrane lipids indicate that ammonium diffusing upwards from the anoxic deep water is consumed by anammox bacteria below the oxic zone. This is the first time that anammox bacteria have been identified and directly linked to the removal of fixed inorganic nitrogen in the environment. The widespread occurrence of ammonium consumption in suboxic marine settings indicates that anammox might be important in the oceanic nitrogen cycle.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Archaeal nitrification in the ocean

Cornelia Wuchter; Ben Abbas; Marco J. L. Coolen; Judith van Bleijswijk; Peer Timmers; Marc Strous; Eva Teira; Gerhard J. Herndl; Jack J. Middelburg; Stefan Schouten; Jaap S. Sinninghe Damsté

Marine Crenarchaeota are the most abundant single group of prokaryotes in the ocean, but their physiology and role in marine biogeochemical cycles are unknown. Recently, a member of this clade was isolated from a sea aquarium and shown to be capable of nitrification, tentatively suggesting that Crenarchaeota may play a role in the oceanic nitrogen cycle. We enriched a crenarchaeote from North Sea water and showed that its abundance, and not that of bacteria, correlates with ammonium oxidation to nitrite. A time series study in the North Sea revealed that the abundance of the gene encoding for the archaeal ammonia monooxygenase alfa subunit (amoA) is correlated with a decline in ammonium concentrations and with the abundance of Crenarchaeota. Remarkably, the archaeal amoA abundance was 1–2 orders of magnitude higher than those of bacterial nitrifiers, which are commonly thought to mediate the oxidation of ammonium to nitrite in marine environments. Analysis of Atlantic waters of the upper 1,000 m, where most of the ammonium regeneration and oxidation takes place, showed that crenarchaeotal amoA copy numbers are also 1–3 orders of magnitude higher than those of bacterial amoA. Our data thus suggest a major role for Archaea in oceanic nitrification.


Earth and Planetary Science Letters | 2002

Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures?

Stefan Schouten; Ellen C. Hopmans; Enno Schefuß; Jaap S. Sinninghe Damsté

It has recently been shown that membrane lipids of marine crenarchaeota, a ubiquitous and abundant component of plankton, occur in relatively high concentrations in recent and ancient sediments. In this study we investigated the environmental controls on the relative distribution of these lipids in surface sediments. We especially focussed on temperature, as it is known from the thermophilic genetic relatives of marine crenarchaetoa that the composition of their membrane strongly depends on growth temperature. Indeed, a significant linear correlation (r2=0.92) is found between the number of cyclopentane rings in sedimentary membrane lipids derived from marine crenarchaeota and the annual mean sea surface temperatures. This suggests that the mechanism of physical adaptation of their membrane compositions to temperature is identical to that of their thermophilic relatives. In turn, archaeal lipid distributions in sediments may thus allow the reconstruction of sea water temperatures of ancient marine environments.


Nature | 2006

A microbial consortium couples anaerobic methane oxidation to denitrification

Ashna Anjana Raghoebarsing; Arjan Pol; Katinka van de Pas-Schoonen; A.J.P. Smolders; Katharina F. Ettwig; W. Irene C. Rijpstra; Stefan Schouten; Jaap S. Sinninghe Damsté; Huub J. M. Op den Camp; Mike S. M. Jetten; Marc Strous

Modern agriculture has accelerated biological methane and nitrogen cycling on a global scale. Freshwater sediments often receive increased downward fluxes of nitrate from agricultural runoff and upward fluxes of methane generated by anaerobic decomposition. In theory, prokaryotes should be capable of using nitrate to oxidize methane anaerobically, but such organisms have neither been observed in nature nor isolated in the laboratory. Microbial oxidation of methane is thus believed to proceed only with oxygen or sulphate. Here we show that the direct, anaerobic oxidation of methane coupled to denitrification of nitrate is possible. A microbial consortium, enriched from anoxic sediments, oxidized methane to carbon dioxide coupled to denitrification in the complete absence of oxygen. This consortium consisted of two microorganisms, a bacterium representing a phylum without any cultured species and an archaeon distantly related to marine methanotrophic Archaea. The detection of relatives of these prokaryotes in different freshwater ecosystems worldwide indicates that the reaction presented here may make a substantial contribution to biological methane and nitrogen cycles.


Nature | 2006

Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum

Appy Sluijs; Stefan Schouten; Mark Pagani; Martijn Woltering; Henk Brinkhuis; Jaap S. Sinninghe Damsté; Gerald R. Dickens; Matthew Huber; Gert-Jan Reichart; Ruediger Stein; Jens Matthiessen; Lucas J. Lourens; Nikolai Pedentchouk; Jan Backman; Kathryn Moran

The Palaeocene/Eocene thermal maximum, ∼55 million years ago, was a brief period of widespread, extreme climatic warming, that was associated with massive atmospheric greenhouse gas input. Although aspects of the resulting environmental changes are well documented at low latitudes, no data were available to quantify simultaneous changes in the Arctic region. Here we identify the Palaeocene/Eocene thermal maximum in a marine sedimentary sequence obtained during the Arctic Coring Expedition. We show that sea surface temperatures near the North Pole increased from ∼18 °C to over 23 °C during this event. Such warm values imply the absence of ice and thus exclude the influence of ice-albedo feedbacks on this Arctic warming. At the same time, sea level rose while anoxic and euxinic conditions developed in the oceans bottom waters and photic zone, respectively. Increasing temperature and sea level match expectations based on palaeoclimate model simulations, but the absolute polar temperatures that we derive before, during and after the event are more than 10 °C warmer than those model-predicted. This suggests that higher-than-modern greenhouse gas concentrations must have operated in conjunction with other feedback mechanisms—perhaps polar stratospheric clouds or hurricane-induced ocean mixing—to amplify early Palaeogene polar temperatures.


Journal of Lipid Research | 2002

Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota.

Jaap S. Sinninghe Damsté; Stefan Schouten; Ellen C. Hopmans; Adri C. T. van Duin; Jan A. J. Geenevasen

The basic structure and stereochemistry of the characteristic glycerol dibiphytanyl glycerol tetraether (GDGT) membrane lipid of cosmopolitan pelagic crenarchaeota has been identified by high field two-dimensional (2D)-NMR techniques. It contains one cyclohexane and four cyclopentane rings formed by internal cyclisation of the biphytanyl chains. Its structure is similar to that of GDGTs biosynthesized by (hyper)thermophilic crenarchaeota apart from the cyclohexane ring. These findings are consistent with the close phylogenetic relationship of (hyper)thermophilic and pelagic crenarchaeota based 16S rRNA. The latter group inherited the biosynthetic capabilities for a membrane composed of cyclopentane ring-containing GDGTs from the (hyper)thermophilic crenarchaeota. However, to cope with the much lower temperature of the ocean, a small but key step in their evolution was the adjustment of the membrane fluidity by making a kink in one of the bicyclic biphytanyl chains by the formation of a cyclohexane ring. This prevents the dense packing characteristic for the cyclopentane ring-containing GDGTs membrane lipids used by hyperthermophilic crenarchaeota to adjust their membrane fluidity to high temperatures.


Rapid Communications in Mass Spectrometry | 2000

Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry

Ellen C. Hopmans; Stefan Schouten; Richard D. Pancost; Marcel T J van der Meer; Jaap S. Sinninghe Damsté

A method combining normal phase high performance liquid chromatography (HPLC) with positive ion atmospheric pressure chemical ionization mass spectrometry (APCI-MS) was developed for the analysis of intact glycerol dialkyl glycerol tetraethers (GDGTs) in archaeal cell material and sediments. All GDGTs previously reported to occur in the thermophilic archaeon Sulfolobus solfataricus could be identified based on their mass spectra and retention time. Positive ion mass spectra consisted of abundant protonated molecules and fragment ions corresponding to loss of water and the glycerol moiety. In addition, two novel GDGTs representing alternative combinations of biphytanyl moieties were observed. Using this method, the tetraethers present in the thermophilic archaeon Metallosphaera sedula and two sediment samples were characterized. This rapid method will greatly contribute to the establishment of the sedimentary record of these compounds and increase our understanding of archaea and their occurrence in widely different environments.


Nature | 2006

Arctic hydrology during global warming at the Palaeocene/Eocene thermal maximum

Mark Pagani; Nikolai Pedentchouk; Matthew Huber; Appy Sluijs; Stefan Schouten; Henk Brinkhuis; Jaap S. Sinninghe Damsté; Gerald R. Dickens

The Palaeocene/Eocene thermal maximum represents a period of rapid, extreme global warming ∼55 million years ago, superimposed on an already warm world. This warming is associated with a severe shoaling of the ocean calcite compensation depth and a >2.5 per mil negative carbon isotope excursion in marine and soil carbonates. Together these observations indicate a massive release of 13C-depleted carbon and greenhouse-gas-induced warming. Recently, sediments were recovered from the central Arctic Ocean, providing the first opportunity to evaluate the environmental response at the North Pole at this time. Here we present stable hydrogen and carbon isotope measurements of terrestrial-plant- and aquatic-derived n-alkanes that record changes in hydrology, including surface water salinity and precipitation, and the global carbon cycle. Hydrogen isotope records are interpreted as documenting decreased rainout during moisture transport from lower latitudes and increased moisture delivery to the Arctic at the onset of the Palaeocene/Eocene thermal maximum, consistent with predictions of poleward storm track migrations during global warming. The terrestrial-plant carbon isotope excursion (about -4.5 to -6 per mil) is substantially larger than those of marine carbonates. Previously, this offset was explained by the physiological response of plants to increases in surface humidity. But this mechanism is not an effective explanation in this wet Arctic setting, leading us to hypothesize that the true magnitude of the excursion—and associated carbon input—was greater than originally surmised. Greater carbon release and strong hydrological cycle feedbacks may help explain the maintenance of this unprecedented warmth.


Science | 2008

Northern hemisphere controls on tropical southeast African climate during the past 60,000 years.

Jessica E. Tierney; J. M. Russell; Yongsong Huang; Jaap S. Sinninghe Damsté; Ellen C. Hopmans; Andrew S. Cohen

The processes that control climate in the tropics are poorly understood. We applied compound-specific hydrogen isotopes (δD) and the TEX86 (tetraether index of 86 carbon atoms) temperature proxy to sediment cores from Lake Tanganyika to independently reconstruct precipitation and temperature variations during the past 60,000 years. Tanganyika temperatures follow Northern Hemisphere insolation and indicate that warming in tropical southeast Africa during the last glacial termination began to increase ∼3000 years before atmospheric carbon dioxide concentrations. δD data show that this region experienced abrupt changes in hydrology coeval with orbital and millennial-scale events recorded in Northern Hemisphere monsoonal climate records. This implies that precipitation in tropical southeast Africa is more strongly controlled by changes in Indian Ocean sea surface temperatures and the winter Indian monsoon than by migration of the Intertropical Convergence Zone.


Nature | 2002

Linearly concatenated cyclobutane lipids form a dense bacterial membrane.

Jaap S. Sinninghe Damsté; Marc Strous; W. Irene C. Rijpstra; Ellen C. Hopmans; Jan A. J. Geenevasen; Adri C. T. van Duin; Laura van Niftrik; Mike S. M. Jetten

Lipid membranes are essential to the functioning of cells, enabling the existence of concentration gradients of ions and metabolites. Microbial membrane lipids can contain three-, five-, six- and even seven-membered aliphatic rings, but four-membered aliphatic cyclobutane rings have never been observed. Here we report the discovery of cyclobutane rings in the dominant membrane lipids of two anaerobic ammonium-oxidizing (anammox) bacteria. These lipids contain up to five linearly fused cyclobutane moieties with cis ring junctions. Such ‘ladderane’ molecules are unprecedented in nature but are known as promising building blocks in optoelectronics. The ladderane lipids occur in the membrane of the anammoxosome, the dedicated intracytoplasmic compartment where anammox catabolism takes place. They give rise to an exceptionally dense membrane, a tight barrier against diffusion. We propose that such a membrane is required to maintain concentration gradients during the exceptionally slow anammox metabolism and to protect the remainder of the cell from the toxic anammox intermediates. Our results further illustrate that microbial membrane lipid structures are far more diverse than previously recognized.

Collaboration


Dive into the Jaap S. Sinninghe Damsté's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marianne Baas

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Mike S. M. Jetten

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge