Jac M.M.J.G. Aarts
Wageningen University and Research Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jac M.M.J.G. Aarts.
Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment | 1998
Toine F.H. Bovee; Laurentius A. P. Hoogenboom; Astrid R. M. Hamers; W.A. Traag; T. Zuidema; Jac M.M.J.G. Aarts; Abraham Brouwer; Harry A. Kuiper
There is a strong need for the development of relatively cheap and rapid bioassays for the determination of dioxins and related compounds in food. A newly developed CALUX (Chemical-Activated LUciferase gene eXpression) bioassay was tested for its possible use to determine low levels of dioxins in bovine milk. Data show that this mammalian cell-based test is very sensitive for 2,3,7,8-substituted dioxins and related PCBs, thereby reflecting the relative potencies of these compounds in comparison to TCDD (TEF-values). The limit of detection was about 50 fg of TCDD. Furthermore, the response obtained with a mixture of dioxins was additive, in accordance with the TEF-principle. Milk fat was isolated by centrifugation followed by clean-up of the fat with n-pentane, removal of the fat on a 33% H2SO4 silica column, and determination of Ah receptor agonist activity with the CALUX-bioassay. An equivalent of 67 mg fat was tested per experimental unit, resulting in a limit of quantification around 1 pg i-TEQ/g fat. To investigate the performance of the method, butter fat was cleaned and spiked with a mixture of 17 different 2,3,7,8-substituted PCDD and PCDF congeners at 1, 3, 6, 9, 12 and 15 pg TEQ/g fat, as confirmed by GC/MS. In this concentration range, the method showed a recovery of TEQs around 67% (58-87%). The reproducibility, determined in three independent series showed a CV varying between 4% and 54%, with the exception of the sample spiked at 1 pg i-TEQ (CV 97%). The repeatability determined with the sample spiked at 6 pg i-TEQ/g showed a CV of 10%. Testing of 22 bovine milk samples, taken at different sites in The Netherlands, in the CALUX-assay showed combined dioxin and dioxin-like PCB levels equivalent to 1.6 pg TCDD/g fat (range 0.2-4.6). GC/MS analysis of these samples revealed an average level of 1.7 pg i-TEQ/g fat, varying between 0.5 and 4.7 pg i-TEQ/g fat. All five samples showing a GC/MS determined dioxin content of more than 2 pg i-TEQ/g fat gave a response in the CALUX-assay corresponding to more than 2 pg TCDD/g fat. These data clearly show that the CALUX-bioassay is a promising method for the rapid and low cost screening of dioxins in bovine milk.
Journal of Carcinogenesis | 2004
Marjan van Erk; Eva Teuling; Yvonne C. M. Staal; Sylvie Huybers; Peter J. van Bladeren; Jac M.M.J.G. Aarts; Ben van Ommen
Background Curcumin is a spice and a coloring food compound with a promising role in colon cancer prevention. Curcumin protects against development of colon tumors in rats treated with a colon carcinogen, in colon cancer cells curcumin can inhibit cell proliferation and induce apoptosis, it is an anti-oxidant and it can act as an anti-inflammatory agent. The aim of this study was to elucidate mechanisms and effect of curcumin in colon cancer cells using gene expression profiling. Methods Gene expression changes in response to curcumin exposure were studied in two human colon cancer cell lines, using cDNA microarrays with four thousand human genes. HT29 cells were exposed to two different concentrations of curcumin and gene expression changes were followed in time (3, 6, 12, 24 and 48 hours). Gene expression changes after short-term exposure (3 or 6 hours) to curcumin were also studied in a second cell type, Caco-2 cells. Results Gene expression changes (>1.5-fold) were found at all time points. HT29 cells were more sensitive to curcumin than Caco-2 cells. Early response genes were involved in cell cycle, signal transduction, DNA repair, gene transcription, cell adhesion and xenobiotic metabolism. In HT29 cells curcumin modulated a number of cell cycle genes of which several have a role in transition through the G2/M phase. This corresponded to a cell cycle arrest in the G2/M phase as was observed by flow cytometry. Functional groups with a similar expression profile included genes involved in phase-II metabolism that were induced by curcumin after 12 and 24 hours. Expression of some cytochrome P450 genes was downregulated by curcumin in HT29 and Caco-2 cells. In addition, curcumin affected expression of metallothionein genes, tubulin genes, p53 and other genes involved in colon carcinogenesis. Conclusions This study has extended knowledge on pathways or processes already reported to be affected by curcumin (cell cycle arrest, phase-II genes). Moreover, potential new leads to genes and pathways that could play a role in colon cancer prevention by curcumin were identified.
Reproductive Toxicology | 2010
Bart van der Burg; Roos Winter; Marc Weimer; Pascale Berckmans; Go Suzuki; Linda Gijsbers; Arjen Jonas; Sander C. van der Linden; Hilda Witters; Jac M.M.J.G. Aarts; Juliette Legler; Annette Kopp-Schneider; Susanne Bremer
Estrogenicity of chemicals has received significant attention and is linked to endocrine-disrupting activities. However, there is a paucity of validated methods to assess estrogenicity in vitro. We have established a robust method to test estrogenic and antiestrogenic activity of compounds in vitro, as an alternative to using animal models such as the uterotrophic assay. To this end we optimized protocols to be used in combination with CALUX reporter gene assays and carried out an in house prevalidation, followed by two rounds of tests to establish transferability. Problems in the initial test with transferability were solved by isolation of a novel cell clone of the ERalpha CALUX line with greatly improved stability and luciferase levels. This cell line proved to be a very suitable and reliable predictor of estrogenicity of chemicals and was able to readily rank a range of chemicals on the basis of their EC50 values.
Cancer Epidemiology, Biomarkers & Prevention | 2005
Mariken J. Tijhuis; Petra A. Wark; Jac M.M.J.G. Aarts; Marleen H. P. Cw. Visker; Fokko M. Nagengast; Frans J. Kok; Ellen Kampman
The possible interplay between cruciferous vegetable consumption, functional genetic variations in glutathione S-transferases (GST) M1, T1, P1, and A1, and colorectal adenomas, was investigated in a Dutch case-control study. The GSTM1 and GSTT1 deletion polymorphisms, and the single nucleotide polymorphisms in GSTP1 (A313G) and in GSTA1 (C-69T) were assessed among 746 cases who developed colorectal adenomas and 698 endoscopy-based controls without any type of colorectal polyps. High and low cruciferous vegetable consumption was defined based on a median split in the control group. High consumption was slightly positively associated with colorectal adenomas [odds ratio (OR) 1.15; 95% confidence interval, 0.92-1.44]. For GSTP1, a positive association with higher cruciferous vegetable intake was only apparent in individuals with the low-activity GSTP1 genotype (GG genotype, OR 1.94; 95% confidence interval, 1.02-3.69). This interaction was more pronounced in men, with higher age and with higher meat intake. The GSTA1 polymorphism may have a modifying role as well: the OR for higher intake compared with lower intake was 1.57 (0.93-2.65) for individuals homozygous for the low expression variant (TT genotype). This seemed to be stronger with younger age and higher red meat intake. Cruciferous vegetable consumption and the combined GSTA1 and GSTP1 genotypes showed a statistically significant interaction (P = 0.034). The GSTM1 and GSTT1 genotypes did not seem to modify the association between cruciferous vegetable intake and colorectal adenomas. In conclusion, GSTP1 and GSTA1 genotypes might modulate the association between cruciferous vegetable intake and colorectal adenomas. (Cancer Epidemiol Biomarkers Prev 2005;14(12):2943–51)
Biochemical Pharmacology | 2002
Laura H.J. de Haan; Anne-Marie J.F. Boerboom; Ivonne M. C. M. Rietjens; Daniëlla van Capelle; Annemieke J.M De Ruijter; Anil K. Jaiswal; Jac M.M.J.G. Aarts
NAD(P)H:quinone oxidoreductase 1 (NQO1) has often been suggested to be involved in cancer prevention by means of detoxification of electrophilic quinones. In the present study, a series of Chinese hamster ovary (CHO) cell lines expressing various elevated levels of human NQO1 were generated by stable transfection. The level of NQO1 over-expression ranged from 14 to 29 times the NQO1 activity in the wild-type CHO cells. This panel of cell lines, allowed investigation of the protective role of NQO1 in quinone cytotoxicity. It could be demonstrated that menadione toxicity was significantly reduced in all NQO1-transfected CHO clones compared to the wild-type cells, but the clones did not show differences in their level of protection against menadione. This observation pointed at a critical threshold concentration of NQO1 above which a further increase does not provide further protection against quinone cytotoxicity. Additional studies in which the NQO1 activity was inhibited by dicoumarol showed that only dicoumarol concentrations of about five times the EC(50) for NQO1 inhibition were able to reduce NQO1 levels below the apparent threshold, making the cells more sensitive. The level of this threshold was estimated to be in the range of base line NQO1 activities observed in several tissues and species. Thus, the results of the present study indicate that beneficial effects of NQO1 induction by, for example, cruciferous vegetables might be absent or present depending on the NQO1 activity threshold for optimal protection and the basal level of NQO1 expression in the tissue and species of interest.
Environmental Toxicology and Pharmacology | 2005
Barry M.G. Blankvoort; Richard J.T. Rodenburg; Albertinka J. Murk; Jan H. Koeman; R. Schilt; Jac M.M.J.G. Aarts
This paper describes the screening of 22 extracts from 18 different aquatic environmental samples for androgenic activity, including indirect and interactive effects on androgen receptor (AR)-mediated signal transduction, using the AR-LUX bioassay. Four samples, originating from an industrial wastewater treatment plant (WTP) or the river Meuse, were shown to contain substantial androgenic activity. Moreover, the samples originating from the industrial WTP showed an enhancement of the maximal androgenic response relative to that elicited by the standard androgen methyltrienolone (R1881) in the AR-LUX assay. This indicates the involvement of cellular mechanisms other than receptor-ligand interaction influencing AR-regulated pathways. This also demonstrates the additional value of cell based assays featuring a more complete array of fully functional interacting pathways. Chemical analysis using GC-MS confirmed the presence of a number of androgens and also estrogens in these WTP samples. Subsequently, we showed that estrone and tributyltin hydride (TBT-H) enhance the response to androgens. This indicates that the presence of numerous compounds in addition to androgens in environmental mixtures might very well result in a more profound perturbation of the normal physiology of exposed organisms than estimated based on the androgen levels alone. Therefore, risk assessment of environmental samples should include an evaluation of the presence and the interactive effects of (ant)agonists of carefully selected relevant cellular receptors in order to provide a realistic estimate of the integrated ecotoxicological risk of the compounds present.
Analytical Biochemistry | 2011
Linda Gijsbers; Hai-Yen Man; Samantha K. Kloet; Laura H.J. de Haan; Jaap Keijer; Ivonne M. C. M. Rietjens; Bart van der Burg; Jac M.M.J.G. Aarts
Activation of peroxisome proliferator-activated receptor γ (PPARγ) by ligands is associated with beneficial health effects, including anti-inflammatory and insulin-sensitizing effects. The aim of the current study was to develop luciferase reporter gene assays to enable fast and low-cost measurement of PPARγ agonist and antagonist activity. Two reporter gene assays, PPARγ1 CALUX and PPARγ2 CALUX, were developed by stable transfection of U2OS cells with an expression vector for PPARγ1 or PPARγ2 and a pGL3-3xPPRE-tata-luc or pGL4-3xPPRE-tata-luc reporter construct, respectively. PPARγ1 CALUX and PPARγ2 CALUX cells showed similar concentration-dependent luciferase induction upon exposure to the PPARγ agonists rosiglitazone, troglitazone, pioglitazone, ciglitazone, netoglitazone, and 15-deoxy-Δ(12,14)-prostaglandin J(2). The potency to induce luciferase decreased in the following order: rosiglitazone>troglitazone=pioglitazone>netoglitazone>ciglitazone. A concentration-dependent decrease in the response to 50nM rosiglitazone was observed on the addition of PPARγ antagonist GW9662 or T0070907 in both PPARγ1 CALUX and PPARγ2 CALUX cells. The PPARα agonists WY14643 and fenofibrate failed to induce luciferase activity, confirming the specificity of these cell lines for PPARγ agonists. In conclusion, PPARγ1 CALUX and PPARγ2 CALUX cells provide a reliable and useful tool to screen (bio)chemicals for PPARγ agonist or antagonist activity.
Toxicology in Vitro | 2003
Anna Gliszczyńska-Świgło; Hester van der Woude; Laura H.J. de Haan; Bożena Tyrakowska; Jac M.M.J.G. Aarts; Ivonne M. C. M. Rietjens
The effects of quercetin on viability and proliferation of Chinese Hamster Ovary (CHO) cells and CHO cells overexpressing human quinone reductase (CHO+NQO1) were studied to investigate the involvement of the pro-oxidant quinone chemistry of quercetin. The toxicity of menadione was significantly reduced in CHO+NQO1 cells compared to wild-type CHO cells, validating the NQO1-overexpression in the CHO+NQO1 transfectant. Quercetin inhibited the proliferation of wild-type CHO and CHO+NQO1 cells to a similar extent without affecting cell viability, indicating that NQO1 enrichment of CHO cells did not provide increased protection. On the other hand, inhibition of NQO1 in both types of cells by dicoumarol significantly potentiated the inhibitory effect of quercetin on cell proliferation, revealing the role of NQO1 in cellular protection against quercetin. Altogether, these results can be explained by the hypothesis that both wild-type CHO and CHO+NQO1 cells contain sufficient NQO1 activity for optimal protection against the pro-oxidant effect of quercetin on cell proliferation. The results also point at a cellular NQO1 threshold for optimal protection against quercetin. This NQO1 threshold seems to be in the range of NQO1 activities already present in various tissues.
Food and Chemical Toxicology | 2008
Yee Y. Lee-Hilz; Maria Stolaki; Willem J. H. van Berkel; Jac M.M.J.G. Aarts; Ivonne M. C. M. Rietjens
Quercetin is a flavonoid reported to have health-promoting properties. Due to its extensive metabolism to glucuronides in vivo, questions were raised if studies conducted with quercetin aglycone, stating its health-promoting activity, are of actual relevance. Here we show that glucuronides of quercetin, and its methylated forms isorhamnetin and tamarixetin, can induce EpRE-mediated gene expression up to 5-fold. Furthermore, evidence is presented that EpRE-mediated gene induction by these glucuronides involves their deglucuronidation. This indicates that although quercetin-derived glucuronides are the major metabolites present in the systemic circulation, deglucuronidated derivatives are the active compounds responsible for their beneficial EpRE-mediated gene expression effects.
ALTEX-Alternatives to Animal Experimentation | 2013
Si Wang; René Houtman; Diana Melchers; Jac M.M.J.G. Aarts; Ad A. C. M. Peijnenburg; van R. Beuningen; Ivonne M. C. M. Rietjens; Toine F.H. Bovee
To further develop an integrated in vitro testing strategy for replacement of in vivo tests for (anti-)estrogenicity testing, the ligand-modulated interaction of coregulators with estrogen receptor α was assessed using a PamChip® plate. The relative estrogenic potencies determined, based on ERα binding to coregulator peptides in the presence of ligands on the PamChip® plate, were compared to the relative estrogenic potencies as determined in the in vivo uterotrophic assay. The results show that the estrogenic potencies predicted by the 57 coactivators on the peptide microarray for 18 compounds that display a clear E2 dose-dependent response (goodness of fit of a logistic dose-response model of 0.90 or higher) correlated very well with their in vivo potencies in the uterotrophic assay, i.e., coefficient of determination values for 30 coactivators higher than or equal to 0.85. Moreover, this coregulator binding assay is able to distinguish ER agonists from ER antagonists: profiles of selective estrogen receptor modulators, such as tamoxifen, were distinct from those of pure ER agonists, such as dienestrol. Combination of this coregulator binding assay with other types of in vitro assays, e.g., reporter gene assays and the H295R steroidogenesis assay, will frame an in vitro test panel for screening and prioritization of chemicals, thereby contributing to the reduction and ultimately the replacement of animal testing for (anti-)estrogenic effects.