Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacek Krzeminski is active.

Publication


Featured researches published by Jacek Krzeminski.


Nucleic Acids Research | 2011

Resistance of bulky DNA lesions to nucleotide excision repair can result from extensive aromatic lesion–base stacking interactions

Dara Reeves; Hong Mu; Konstantin Kropachev; Yuqin Cai; Shuang Ding; Alexander Kolbanovskiy; Marina Kolbanovskiy; Ying Chen; Jacek Krzeminski; Shantu Amin; Dinshaw J. Patel; Suse Broyde; Nicholas E. Geacintov

The molecular basis of resistance to nucleotide excision repair (NER) of certain bulky DNA lesions is poorly understood. To address this issue, we have studied NER in human HeLa cell extracts of two topologically distinct lesions, one derived from benzo[a]pyrene (10R-(+)-cis-anti-B[a]P-N2-dG), and one from the food mutagen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (C8-dG-PhIP), embedded in either full or ‘deletion’ duplexes (the partner nucleotide opposite the lesion is missing). All lesions adopt base-displaced intercalated conformations. Both full duplexes are thermodynamically destabilized and are excellent substrates of NER. However, the identical 10R-(+)-cis-anti-B[a]P-N2-dG adduct in the deletion duplex dramatically enhances the thermal stability of this duplex, and is completely resistant to NER. Molecular dynamics simulations show that B[a]P lesion-induced distortion/destabilization is compensated by stabilizing aromatic ring system–base stacking interactions. In the C8-dG-PhIP-deletion duplex, the smaller size of the aromatic ring system and the mobile phenyl ring are less stabilizing and yield moderate NER efficiency. Thus, a partner nucleotide opposite the lesion is not an absolute requirement for the successful initiation of NER. Our observations are consistent with the hypothesis that carcinogen–base stacking interactions, which contribute to the local DNA stability, can prevent the successful insertion of an XPC β-hairpin into the duplex and the normal recruitment of other downstream NER factors.


Drug and Chemical Toxicology | 2002

LACK OF DNA BINDING IN THE RAT NASAL MUCOSA AND OTHER TISSUES OF THE NASAL TOXICANTS ROFLUMILAST, A PHOSPHODIESTERASE 4 INHIBITOR, AND A METABOLITE, 4-AMINO-3,5-DICHLOROPYRIDINE, IN CONTRAST TO THE NASAL CARCINOGEN 2,6-DIMETHYLANILINE*

Alan M. Jeffrey; Feng-Qi Luo; Shantilal Amin; Jacek Krzeminski; Karl Zech; Gary M. Williams

The phosphodiesterase 4 inhibitor Roflumilast (B9302-107) (RF) and its metabolite 4-amino-3,5-dichloropyridine (ADCP) produced nasal toxicity in preclinical safety studies with rats. The purpose of this study was to assess the possible formation of DNA adducts, by RF and ADCP, in the nasal mucosa, liver and testes of male rats using the 32P-postlabeling assay. For comparison, rats were exposed to the DNA-reactive carcinogens 2,6-dimethylaniline (DMA), also known as 2,6-xylidine, a nasal carcinogen, and the aromatic amine carcinogens 4,4′-methylene-bis(2-chloroaniline) (MOCA), which yields monocyclic DNA adducts, and 2-acetylaminofluorene (2-AAF). In the case of RF, possible sources of DNA adducts include the parent molecule and its ADCP moiety by enzymatic N-hydroxylation and sulfation, reactions typical of carcinogenic aromatic amines. 4-Acetoxylamino-3,5-dichloropyridine (N-acetoxy-ADCP), a chemically activated derivative of ADCP, was prepared and used to modify DNA which was then used to establish the chromatographic conditions with which to reliably detect whether or not such adducts were formed metabolically from RF and ADCP. Similarly, a standard N-hydroxy-DMA was prepared, but the corresponding N-acetoxy derivative was unstable and decomposed during synthesis. Both N-hydroxy-DMA and N-acetoxy-ADCP were mutagenic in the Salmonella typhimurium Ames assay using strain TA100 without an exogenous bioactivation system, with the former being more potent. N-hydroxy-ADCP was essentially inactive in this assay. For the 32P-postlabeling assay, male Wistar rats were exposed to the test substances and carrier control compounds by intragastric instillation at the selected dose levels for 7 days. Subsequently, the nasal mucosa, liver, and testes of the rats exposed to the test or control compounds were extirpated, the DNA extracted and the samples postlabeled. The patterns of adducts formed with the test compounds were compared to those formed in N-acetoxy-ADCP- and N-hydroxy-DMA-adducted DNA, which were assayed by both nuclease P1 and butanol enhancement methods. Based upon the similarity of results from the two enhancement methods, only the former was used for the in vivo studies. No evidence was obtained for the formation of DNA adducts from RF or its metabolites, specifically ADCP, under the conditions of these assays despite the ability to detect adducts from DNA modified chemically with N-acetoxy-ADCP and DNA adducts from the other compounds in their target organs. In the absence of a pattern of compound-related spots, we conclude that RF does not form DNA adducts having the potential to initiate neoplasia in these three tissues.


Pharmacogenetics and Genomics | 2011

Characterization of UDP-glucuronosyltransferase 2A1 (UGT2A1) variants and their potential role in tobacco carcinogenesis.

Ryan T. Bushey; Gang Chen; Andrea S. Blevins-Primeau; Jacek Krzeminski; Shantu Amin; Philip Lazarus

Objective To examine UGT2A1 expression in human tissues, determine its glucuronidation activity against tobacco carcinogens, and assess the potential functional role of UGT2A1 missense single nucleotide polymorphisms on UGT2A1 enzyme activity. Methods Reverse transcription polymerase chain reaction and real time polymerase chain reaction were used to assess UGT2A1 gene expression in various human tissues. A glucuronidation assay measured by reverse phase ultra-performance liquid chromatography was used to determine UGT2A1 activity. Results UGT2A1 was expressed in aerodigestive tract tissues including trachea, larynx, tonsil, lung, and colon; no expression was observed in breast, whole brain, pancreas, prostate, kidney, liver, or esophagus. UGT2A1 exhibited highest expression in the lung, followed by trachea >tonsil >larynx >colon >olfactory tissue. Cell homogenates prepared from wildtype UGT2A175Lys308Gly overexpressing HEK293 cells showed significant glucuronidation activity against a variety of polycyclic aromatic hydrocarbons including, 1-hydroxy-benzo(a)pyrene, benzo(a)pyrene-7,8-diol, and 5-methylchrysene-1,2-diol. No activity was observed in UGT2A1 overexpressing cell homogenate against substrates that form N-glucuronides, such as 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), nicotine, or N-OH-2-amino-1-methyl-6-phenylimidazo [4,5–b] pyridine (N-OH PhIP). A significant (P<0.05) decrease (approximately 25%) in glucuronidation activity (Vmax/KM) was observed against all polycyclic aromatic hydrocarbons substrates for the UGT2A175Arg308Gly variant compared with homogenates from wildtype UGT2A175Lys308Gly; no activity was observed for cell homogenates overexpressing the UGT2A175Lys308Arg variant for all substrates tested. Conclusion These data suggest that UGT2A1 is an important detoxification enzyme in the metabolism of polycyclic aromatic hydrocarbons within target tissues for tobacco carcinogens and functional polymorphisms in UGT2A1 may play a role in tobacco-related cancer risk.


Toxicological Sciences | 2012

Elevated hepatic iron activates NF-E2-related factor 2-regulated pathway in a dietary iron overload mouse model.

Mi Sun Moon; Emily I. McDevitt; Junjia Zhu; Bruce A. Stanley; Jacek Krzeminski; Shantu Amin; Cesar Aliaga; Thomas G. Miller; Harriet C. Isom

Hepatic iron overload has been associated classically with the genetic disorder hereditary hemochromatosis. More recently, it has become apparent that mild-to-moderate degrees of elevated hepatic iron stores observed in other liver diseases also have clinical relevance. The goal was to use a mouse model of dietary hepatic iron overload and isobaric tag for relative and absolute quantitation proteomics to identify, at a global level, differentially expressed proteins in livers from mice fed a control or 3,5,5-trimethyl-hexanoyl-ferrocene (TMHF) supplemented diet for 4 weeks. The expression of 74 proteins was altered by ≥ ±1.5-fold, showing that the effects of iron on the liver proteome were extensive. The top canonical pathway altered by TMHF treatment was the NF-E2-related factor 2 (NRF2-)-mediated oxidative stress response. Because of the long-standing association of elevated hepatic iron with oxidative stress, the remainder of the study was focused on NRF2. TMHF treatment upregulated 25 phase I/II and antioxidant proteins previously categorized as NRF2 target gene products. Immunoblot analyses showed that TMHF treatment increased the levels of glutathione S-transferase (GST) M1, GSTM4, glutamate-cysteine ligase (GCL) catalytic subunit, GCL modifier subunit, glutathione synthetase, glutathione reductase, heme oxygenase 1, epoxide hydrolase 1, and NAD(P)H dehydrogenase quinone 1. Immunofluorescence, carried out to determine the cellular localization of NRF2, showed that NRF2 was detected in the nucleus of hepatocytes from TMHF-treated mice and not from control mice. We conclude that elevated hepatic iron in a mouse model activates NRF2, a key regulator of the cellular response to oxidative stress.


Chemical Research in Toxicology | 2008

Characterization of the Antiallergic Drugs 3-[2-(2-Phenylethyl) benzoimidazole-4-yl]-3-hydroxypropanoic Acid and Ethyl 3-Hydroxy-3-[2-(2-phenylethyl)benzoimidazol-4-yl]propanoate as Full Aryl Hydrocarbon Receptor Agonists

José Luis Morales; Jacek Krzeminski; Shantu Amin; Gary H. Perdew

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates most of the toxic effects of numerous chlorinated (e.g., TCDD) and nonchlorinated polycyclic aromatic compounds (e.g., benzo[ a]pyrene). Studies in AhR null mice suggested that this receptor may also play a role in the modulation of immune responses. Recently, two drugs, namely, M50354 and M50367 (ethyl ester derivative of M50354), were described as AhR ligands with high efficacy toward reducing atopic allergic symptoms in an AhR-dependent manner by skewing T helper cell differentiation toward a T H1 phenotype [Negishi et al. (2005) J. Immunol. 175 (11), 7348-7356]. Surprisingly, these drugs were shown to have minimal activity toward inducing classical dioxin responsive element-driven AhR-mediated CYP1A1 transcription. We synthesized and reevaluated the ability of these drugs to regulate AhR activity. In contrast to previously published data, both M50354 and M50367 were found to be potent inducers of several AhR target genes, namely, CYP1A1, CYP1B1, and UGT1A2. M50367 was a more effective agonist than M50354, perhaps accounting for its higher bioavailability in vivo. However, M50354 was capable of displacing an AhR-specific radioligand more effectively than M50367. This is consistent with M50354 being the active metabolite of M50367. In conclusion, two selective inhibitors of TH2 differentiation are full AhR agonists.


Environmental Health Perspectives | 2015

Radon Exposure, IL-6 Promoter Variants, and Lung Squamous Cell Carcinoma in Former Uranium Miners

Shuguang Leng; Cynthia L. Thomas; Amanda M. Snider; Maria A. Picchi; Wenshu Chen; Derall Willis; Teara G. Carr; Jacek Krzeminski; Dhimant Desai; Amin Shantu; Yong Lin; Marty R. Jacobson; Steven A. Belinsky

Background: High radon exposure is a risk factor for squamous cell carcinoma, a major lung cancer histology observed in former uranium miners. Radon exposure can cause oxidative stress, leading to pulmonary inflammation. Interleukin-6 (IL-6) is a pro-carcinogenic inflammatory cytokine that plays a pivotal role in lung cancer development. Objectives: We assessed whether single nucleotide polymorphisms (SNPs) in the IL6 promoter are associated with lung cancer in former uranium miners with high occupational exposure to radon gas. Methods: Genetic associations were assessed in a case–control study of former uranium miners (242 cases and 336 controls). A replication study was performed using data from the Gene Environment Association Studies (GENEVA) Genome Wide Association Study (GWAS) of Lung Cancer and Smoking. Functional relevance of the SNPs was characterized using in vitro approaches. Results: We found that rs1800797 was associated with squamous cell carcinoma in miners and with a shorter time between the midpoint of the period of substantial exposure and diagnosis among the cases. Furthermore, rs1800797 was also associated with lung cancer among never smokers in the GENEVA dataset. Functional studies identified that the risk allele was associated with increased basal IL-6 mRNA level and greater promoter activity. Furthermore, fibroblasts with the risk allele showed greater induction of IL-6 secretion by hydrogen peroxide or benzo[a]pyrene diolepoxide treatments. Conclusions: An IL6 promoter variant was associated with lung cancer in uranium miners and never smokers in two external study populations. The associations are strongly supported by the functional relevance that the IL6 promoter SNP affects basal expression and carcinogen-induced IL-6 secretion. Citation: Leng S, Thomas CL, Snider AM, Picchi MA, Chen W, Willis DG, Carr TG, Krzeminski J, Desai D, Shantu A, Lin Y, Jacobson MR, Belinsky SA. 2016. Radon exposure, IL-6 promoter variants, and lung squamous cell carcinoma in former uranium miners. Environ Health Perspect 124:445–451; http://dx.doi.org/10.1289/ehp.1409437


Chemical Research in Toxicology | 2004

Identification of 5-(deoxyguanosin-N2-yl)-1,2-dihydroxy-1,2-dihydro-6-aminochrysene as the major DNA lesion in the mammary gland of rats treated with the environmental pollutant 6-nitrochrysene

Karam El-Bayoumy; Arun K. Sharma; Jyh-Ming Lin; Jacek Krzeminski; Telih Boyiri; Leon C. King; Guy R. Lambert; William T. Padgett; Stephen Nesnow; Shantu Amin

The environmental pollutant 6-nitrochrysene (6-NC) is a potent carcinogen in several animal models including the rat mammary gland. 6-NC can be activated to intermediates that can damage DNA by simple nitroreduction, ring oxidation, or a combination of ring oxidation and nitroreduction. Only the first pathway (nitroreduction) has been clearly established, and DNA adducts derived from this pathway have been fully characterized in in vitro systems. We also showed previously that the second pathway, ring oxidation leading to the formation of the bay region diol epoxide of 6-NC, is not responsible for the formation of the major DNA adduct in the mammary gland of rats treated with 6-NC. Therefore, in the present study, we explored the validity of the third pathway that involves the combination of both ring oxidation and nitroreduction of 6-NC to form trans-1,2-dihydroxy-1,2-dihydro-6-hydroxylaminochrysene (1,2-DHD-6-NHOH-C). During the course of this study, we synthesized for the first time 1,2-DHD-6-NHOH-C, N-(deoxyguanosin-8-yl)-6-aminochrysene, and N-(deoxyguanosin-8-yl)-1,2-dihydroxy-1,2-dihydro-6-aminochrysene. Incubation of 1,2-DHD-6-NHOH-C with calf thymus DNA resulted in the formation of three adducts. Upon LC/MS combined with 1H NMR analyses, the first eluting adduct was identified as 5-(deoxyguanosin-N2-yl)-1,2-dihydroxy-1,2-dihydro-6-aminochrysene [5-(dG-N2-yl)-1,2-DHD-6-AC], the second eluting adduct was identified as N-(deoxyguanosin-8-yl)-1,2-dihydroxy-1,2-dihydro-6-aminochrysene, and the last was identified as N-(deoxyinosin-8-yl)-1,2-dihydroxy-1,2-dihydro-6-aminochrysene. We also report here for the first time that among those adducts identified in vitro, only 5-(dG-N2-yl)-1,2-DHD-6-AC is the major DNA lesion detected in the mammary glands of rats treated with 6-NC.


Journal of Carcinogenesis | 2012

Comparative metabolism of benzo[a]pyrene by human keratinocytes infected with high-risk human papillomavirus types 16 and 18 as episomal or integrated genomes

Neil Trushin; Samina Alam; Karam El-Bayoumy; Jacek Krzeminski; Shantu Amin; Jenny Gullett; Craig Meyers; Bogdan Prokopczyk

Background: Infection with human papillomavirus (HPV) is a critical factor in the development of cervical cancer. Smoking is an additional risk factor. Tobacco smoke carcinogens, such as benzo[a]pyrene (B[a]P), and their cytochrome P450-related metabolites are present in significantly higher levels in the cervical mucus of women smokers than in nonsmokers. We determined the metabolism and P450 expression of B[a]P-treated human keratinocytes infected with HPV-16 or -18. Materials and Methods: Monolayer cultures of uninfected primary human foreskin keratinocytes, human vaginal and cervical keratinocytes carrying episomal genomes of HPV-16 and -18, respectively, and invasive cervical carcinoma cell lines carrying either HPV-16 or -18 genomes integrated into the host DNA, were incubated with 0.1 μM [3H]B[a]P. The resulting oxidative metabolites were analyzed and quantified by radioflow high-performance liquid chromatography. Additionally, all cell lines were incubated with unlabeled 0.1 μM B[a]P for Western blot analysis of cytochrome P450 1A1 and 1B1. Results: Significant enhancement in levels of both detoxification and activation metabolites was found in incubations with all types of HPV-infected cells compared with control incubations (P < 0.05). The highest capacity to metabolize B[a]P was observed with cells containing integrated HPV-18 genomes. Induction of cytochrome 1B1 was observed in HPV-16 and -18 integrated, and in HPV-16 episomal cell types. Conclusions: Both viral genotype and genomic status in the host cell affect B[a]P metabolism and cytochrome P450 1B1 expression. An increase of DNA-damaging metabolites might result from exposure of HPV-infected women to cigarette smoke carcinogens.


International Journal of Nanomedicine | 2016

Bolaamphiphile-based nanocomplex delivery of phosphorothioate gapmer antisense oligonucleotides as a treatment for Clostridium difficile

John P. Hegarty; Jacek Krzeminski; Arun K. Sharma; Diana Guzman-Villanueva; Volkmar Weissig; David B. Stewart

Despite being a conceptually appealing alternative to conventional antibiotics, a major challenge toward the successful implementation of antisense treatments for bacterial infections is the development of efficient oligonucleotide delivery systems. Cationic vesicles (bolasomes) composed of dequalinium chloride (“DQAsomes”) have been used to deliver plasmid DNA across the cardiolipin-rich inner membrane of mitochondria. As cardiolipin is also a component of many bacterial membranes, we investigated the application of cationic bolasomes to bacteria as an oligonucleotide delivery system. Antisense sequences designed in silico to target the expression of essential genes of the bacterial pathogen, Clostridium difficile, were synthesized as 2′-O-methyl phosphorothioate gapmer antisense oligonucleotides (ASO). These antisense gapmers were quantitatively assessed for their ability to block mRNA translation using luciferase reporter and C. difficile protein expression plasmid constructs in a coupled transcription–translation system. Cationic bolaamphiphile compounds (dequalinium derivatives) of varying alkyl chain length were synthesized and bolasomes were prepared via probe sonication of an aqueous suspension. Bolasomes were characterized by particle size distribution, zeta potential, and binding capacities for anionic oligonucleotide. Bolasomes and antisense gapmers were combined to form antisense nanocomplexes. Anaerobic C. difficile log phase cultures were treated with serial doses of gapmer nanocomplexes or equivalent amounts of empty bolasomes for 24 hours. Antisense gapmers for four gene targets achieved nanomolar minimum inhibitory concentrations for C. difficile, with the lowest values observed for oligonucleotides targeting polymerase genes rpoB and dnaE. No inhibition of bacterial growth was observed from treatments at matched dosages of scrambled gapmer nanocomplexes or plain, oligonucleotide-free bolasomes compared to untreated control cultures. We describe the novel application of cationic bolasomes to deliver ASOs into bacteria. We also report the first successful in vitro antisense treatment to inhibit the growth of C. difficile.


Oncotarget | 2017

Identifying the structure-activity relationship of leelamine necessary for inhibiting intracellular cholesterol transport

Raghavendra Gowda; Gajanan S. Inamdar; Omer F. Kuzu; Saketh S. Dinavahi; Jacek Krzeminski; Madhu Babu Battu; Sreedhara R. Voleti; Shantu Amin; Gavin P. Robertson

Leelamine is an anticancer chemotherapeutic agent inhibiting intracellular cholesterol transport. Cell death mediated by leelamine occurs due to the lysosomotropic property of the compound, its accumulation in the lysosome, and inhibition of cholesterol transport leading to lack of availability for key processes required for functioning of cancer cells. The present study dissects the structure-activity-relationship of leelamine using synthesized derivatives of leelamine and abietic acid, a structurally similar compound, to identify the moiety responsible for anti-cancer activity. Similar to leelamine, all active derivatives had an amino group or a similar moiety that confers a lysosomotropic property to the compound enabling its accumulation in the lysosome. Active derivatives inhibited intracellular cholesterol transport and hindered xenografted melanoma tumor development without obvious systemic toxicity. In silico studies suggested that active derivatives accumulating in lysosomes bound to NPC1, a protein responsible for cholesterol export from the lysosome, to inhibit its activity that then caused accumulation, and lack of cholesterol availability for other key cellular activities. Thus, active derivatives of leelamine or abietic acid maintained lysosomotropic properties, bound to NPC1, and disrupted cellular cholesterol transport as well as availability to retard tumor development.

Collaboration


Dive into the Jacek Krzeminski's collaboration.

Top Co-Authors

Avatar

Shantu Amin

Penn State Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Karam El-Bayoumy

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Dhimant Desai

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Arun K. Sharma

Penn State Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Jyh-Ming Lin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Telih Boyiri

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Yuan-Wan Sun

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge