Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacek Oleksyn is active.

Publication


Featured researches published by Jacek Oleksyn.


Nature | 2004

The worldwide leaf economics spectrum

Ian J. Wright; Peter B. Reich; Mark Westoby; David D. Ackerly; Zdravko Baruch; Frans Bongers; Jeannine Cavender-Bares; Terry Chapin; Johannes H. C. Cornelissen; Matthias Diemer; Jaume Flexas; Eric Garnier; Philip K. Groom; J. Gulías; Kouki Hikosaka; Byron B. Lamont; Tali D. Lee; William G. Lee; Christopher H. Lusk; Jeremy J. Midgley; Marie-Laure Navas; Ülo Niinemets; Jacek Oleksyn; Noriyuki Osada; Hendrik Poorter; Pieter Poot; Lynda D. Prior; Vladimir I. Pyankov; Catherine Roumet; Sean C. Thomas

Bringing together leaf trait data spanning 2,548 species and 175 sites we describe, for the first time at global scale, a universal spectrum of leaf economics consisting of key chemical, structural and physiological properties. The spectrum runs from quick to slow return on investments of nutrients and dry mass in leaves, and operates largely independently of growth form, plant functional type or biome. Categories along the spectrum would, in general, describe leaf economic variation at the global scale better than plant functional types, because functional types overlap substantially in their leaf traits. Overall, modulation of leaf traits and trait relationships by climate is surprisingly modest, although some striking and significant patterns can be seen. Reliable quantification of the leaf economics spectrum and its interaction with climate will prove valuable for modelling nutrient fluxes and vegetation boundaries under changing land-use and climate.


New Phytologist | 2012

Biomass allocation to leaves, stems and roots: meta analyses of interspecific variation and environmental control

Hendrik Poorter; Karl J. Niklas; Peter B. Reich; Jacek Oleksyn; Pieter Poot; Liesje Mommer

We quantified the biomass allocation patterns to leaves, stems and roots in vegetative plants, and how this is influenced by the growth environment, plant size, evolutionary history and competition. Dose-response curves of allocation were constructed by means of a meta-analysis from a wide array of experimental data. They show that the fraction of whole-plant mass represented by leaves (LMF) increases most strongly with nutrients and decreases most strongly with light. Correction for size-induced allocation patterns diminishes the LMF-response to light, but makes the effect of temperature on LMF more apparent. There is a clear phylogenetic effect on allocation, as eudicots invest relatively more than monocots in leaves, as do gymnosperms compared with woody angiosperms. Plants grown at high densities show a clear increase in the stem fraction. However, in most comparisons across species groups or environmental factors, the variation in LMF is smaller than the variation in one of the other components of the growth analysis equation: the leaf area : leaf mass ratio (SLA). In competitive situations, the stem mass fraction increases to a smaller extent than the specific stem length (stem length : stem mass). Thus, we conclude that plants generally are less able to adjust allocation than to alter organ morphology.


International Journal of Plant Sciences | 2003

The Evolution of Plant Functional Variation: Traits, Spectra, and Strategies

Peter B. Reich; Ian J. Wright; Jeannine Cavender-Bares; J. M. Craine; Jacek Oleksyn; Mark Westoby; Michael B. Walters

Variation in plant functional traits results from evolutionary and environmental drivers that operate at a variety of different scales, which makes it a challenge to differentiate among them. In this article we describe patterns of functional trait variation and trait correlations within and among habitats in relation to several environmental and trade‐off axes. We then ask whether such patterns reflect natural selection and can be considered plant strategies. In so doing we highlight evidence that demonstrates that (1) patterns of trait variation across resource and environmental gradients (light, water, nutrients, and temperature) probably reflect adaptation, (2) plant trait variation typically involves multiple‐correlated traits that arise because of inevitable trade‐offs among traits and across levels of whole‐plant integration and that must be understood from a whole‐plant perspective, and (3) such adaptation may be globally generalizable for like conditions; i.e., the set of traits (collections of traits in syndromes) of taxa can be considered as “plant strategies.”


Nature | 2014

Three keys to the radiation of angiosperms into freezing environments

Amy E. Zanne; David C. Tank; William K. Cornwell; Jonathan M. Eastman; Stephen A. Smith; Richard G. FitzJohn; Daniel J. McGlinn; Brian C. O'Meara; Angela T. Moles; Peter B. Reich; Dana L. Royer; Douglas E. Soltis; Peter F. Stevens; Mark Westoby; Ian J. Wright; Lonnie W. Aarssen; Robert I. Bertin; Andre Calaminus; Rafaël Govaerts; Frank Hemmings; Michelle R. Leishman; Jacek Oleksyn; Pamela S. Soltis; Nathan G. Swenson; Laura Warman; Jeremy M. Beaulieu

Early flowering plants are thought to have been woody species restricted to warm habitats. This lineage has since radiated into almost every climate, with manifold growth forms. As angiosperms spread and climate changed, they evolved mechanisms to cope with episodic freezing. To explore the evolution of traits underpinning the ability to persist in freezing conditions, we assembled a large species-level database of growth habit (woody or herbaceous; 49,064 species), as well as leaf phenology (evergreen or deciduous), diameter of hydraulic conduits (that is, xylem vessels and tracheids) and climate occupancies (exposure to freezing). To model the evolution of species’ traits and climate occupancies, we combined these data with an unparalleled dated molecular phylogeny (32,223 species) for land plants. Here we show that woody clades successfully moved into freezing-prone environments by either possessing transport networks of small safe conduits and/or shutting down hydraulic function by dropping leaves during freezing. Herbaceous species largely avoided freezing periods by senescing cheaply constructed aboveground tissue. Growth habit has long been considered labile, but we find that growth habit was less labile than climate occupancy. Additionally, freezing environments were largely filled by lineages that had already become herbs or, when remaining woody, already had small conduits (that is, the trait evolved before the climate occupancy). By contrast, most deciduous woody lineages had an evolutionary shift to seasonally shedding their leaves only after exposure to freezing (that is, the climate occupancy evolved before the trait). For angiosperms to inhabit novel cold environments they had to gain new structural and functional trait solutions; our results suggest that many of these solutions were probably acquired before their foray into the cold.


Ecology | 2006

TREE SPECIES EFFECTS ON DECOMPOSITION AND FOREST FLOOR DYNAMICS IN A COMMON GARDEN

Sarah E. Hobbie; Peter B. Reich; Jacek Oleksyn; Megan Ogdahl; Roma Zytkowiak; Cindy M. Hale; Piotr Karolewski

We studied the effects of tree species on leaf litter decomposition and forest floor dynamics in a common garden experiment of 14 tree species (Abies alba, Acer platanoides, Acer pseudoplatanus, Betula pendula, Carpinus betulus, Fagus sylvatica, Larix decidua, Picea abies, Pinus nigra, Pinus sylvestris, Pseudotsuga menziesii, Quercus robur, Quercus rubra, and Tilia cordata) in southwestern Poland. We used three simultaneous litter bag experiments to tease apart species effects on decomposition via leaf litter chemistry vs. effects on the decomposition environment. Decomposition rates of litter in its plot of origin were negatively correlated with litter lignin and positively correlated with mean annual soil temperature (MAT(soil)) across species. Likewise, decomposition of a common litter type across all plots was positively associated with MAT(soil), and decomposition of litter from all plots in a common plot was negatively related to litter lignin but positively related to litter Ca. Taken together, these results indicate that tree species influenced microbial decomposition primarily via differences in litter lignin (and secondarily, via differences in litter Ca), with high-lignin (and low-Ca) species decomposing most slowly, and by affecting MAT(soil), with warmer plots exhibiting more rapid decomposition. In addition to litter bag experiments, we examined forest floor dynamics in each plot by mass balance, since earthworms were a known component of these forest stands and their access to litter in litter bags was limited. Forest floor removal rates estimated from mass balance were positively related to leaf litter Ca (and unrelated to decay rates obtained using litter bags). Litter Ca, in turn, was positively related to the abundance of earthworms, particularly Lumbricus terrestris. Thus, while species influence microbially mediated decomposition primarily through differences in litter lignin, differences among species in litter Ca are most important in determining species effects on forest floor leaf litter dynamics among these 14 tree species, apparently because of the influence of litter Ca on earthworm activity. The overall influence of these tree species on leaf litter decomposition via effects on both microbial and faunal processing will only become clear when we can quantify the decay dynamics of litter that is translocated belowground by earthworms.


Nature | 2006

Universal scaling of respiratory metabolism, size and nitrogen in plants

Peter B. Reich; Mark G. Tjoelker; Jose-Luis Machado; Jacek Oleksyn

The scaling of respiratory metabolism to body size in animals is considered to be a fundamental law of nature, and there is substantial evidence for an approximate ¾-power relation. Studies suggest that plant respiratory metabolism also scales as the ¾-power of mass, and that higher plant and animal scaling follow similar rules owing to the predominance of fractal-like transport networks and associated allometric scaling. Here, however, using data obtained from about 500 laboratory and field-grown plants from 43 species and four experiments, we show that whole-plant respiration rate scales approximately isometrically (scaling exponent ≈ 1) with total plant mass in individual experiments and has no common relation across all data. Moreover, consistent with theories about biochemically based physiological scaling, isometric scaling of whole-plant respiration rate to total nitrogen content is observed within and across all data sets, with a single relation common to all data. This isometric scaling is unaffected by growth conditions including variation in light, nitrogen availability, temperature and atmospheric CO2 concentration, and is similar within or among species or functional groups. These findings suggest that plants and animals follow different metabolic scaling relations, driven by distinct mechanisms.


Ecological Monographs | 2006

COMPARISONS OF STRUCTURE AND LIFE SPAN IN ROOTS AND LEAVES AMONG TEMPERATE TREES

Jennifer M. Withington; Peter B. Reich; Jacek Oleksyn; David M. Eissenstat

Global data sets provide strong evidence of convergence for leaf structure with leaf longevity such that species having thick leaves, low specific leaf area, low mass-based nitrogen concentrations, and low photosynthetic rates typically exhibit long leaf life span. Leaf longevity and corresponding leaf structure have also been widely linked to plant potential growth rate, plant competition, and nutrient cycling. We hypothesized that selection forces leading to variation in leaf longevity and leaf structure have acted simultaneously and in similar directions on the longevity and structure of the finest root orders. Our four-year study investigated the links between root and leaf life span and root and leaf structure among 11 north-temperate tree species in a common garden in central Poland. Study species included the hardwoods Acer pseudoplatanus L., Acer platanoides L., Fagus sylvatica L., Quercus robur L., and Tilia cordata Mill.; and the conifers Abies alba Mill., Larix decidua Mill., Picea abies (L.) Karst., Pinus nigra Arnold, Pinus sylvestris L., and Pseudotsuga menziesii (Mirbel) Franco. Leaf life span, estimated by phenological observations and needle cohort measurements, ranged from 0.5 to 8 yr among species. Median fine-root life span, estimated using minirhizotron images of individual roots, ranged from 0.5 to 2.5 yr among species. Root life span was not correlated with leaf life span, but specific root length was significantly correlated with specific leaf area. Root nitrogen : carbon ratio was negatively correlated with root longevity, which corroborates previous research that has suggested a trade-off between organ life span and higher organ N concentrations. Specific traits such as thickened outer tangential walls of the exodermis were better predictors of long-lived roots than tissue density or specific root length, which have been correlated with life span in previous studies. Although theories linking organ structure and function suggest that similar root and leaf traits should be linked to life span and that root and leaf life span should be positively correlated, our results suggest that tissue structure and longevity aboveground (leaves) can contrast markedly with that belowground (roots).


Ecology Letters | 2008

Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants

Peter B. Reich; Mark G. Tjoelker; Kurt S. Pregitzer; Ian J. Wright; Jacek Oleksyn; Jose-Luis Machado

Using a database of 2510 measurements from 287 species, we assessed whether general relationships exist between mass-based dark respiration rate and nitrogen concentration for stems and roots, and if they do, whether they are similar to those for leaves. The results demonstrate strong respiration-nitrogen scaling relationships for all observations and for data averaged by species; for roots, stems and leaves examined separately; and for life-forms (woody, herbaceous plants) and phylogenetic groups (angiosperms, gymnosperms) considered separately. No consistent differences in the slopes of these log-log scaling relations were observed among organs or among plant groups, but respiration rates at any common nitrogen concentration were consistently lower on average in leaves than in stems or roots, indicating that organ-specific relationships should be used in models that simulate respiration based on tissue nitrogen concentrations. The results demonstrate both common and divergent aspects of tissue-level respiration-nitrogen scaling for leaves, stems and roots across higher land plants, which are important in their own right and for their utility in modelling carbon fluxes at local to global scales.


Science | 2016

Positive biodiversity-productivity relationship predominant in global forests.

Jingjing Liang; Thomas W. Crowther; Nicolas Picard; Susan K. Wiser; Mo Zhou; Giorgio Alberti; Ernst-Detlef Schulze; A. David McGuire; Fabio Bozzato; Hans Pretzsch; Sergio de-Miguel; Alain Paquette; Bruno Hérault; Michael Scherer-Lorenzen; Christopher B. Barrett; Henry B. Glick; Geerten M. Hengeveld; Gert-Jan Nabuurs; Sebastian Pfautsch; Hélder Viana; Alexander C. Vibrans; Christian Ammer; Peter Schall; David David Verbyla; Nadja M. Tchebakova; Markus Fischer; James V. Watson; Han Y. H. Chen; Xiangdong Lei; Mart-Jan Schelhaas

Global biodiversity and productivity The relationship between biodiversity and ecosystem productivity has been explored in detail in herbaceous vegetation, but patterns in forests are far less well understood. Liang et al. have amassed a global forest data set from >770,000 sample plots in 44 countries. A positive and consistent relationship can be discerned between tree diversity and ecosystem productivity at landscape, country, and ecoregion scales. On average, a 10% loss in biodiversity leads to a 3% loss in productivity. This means that the economic value of maintaining biodiversity for the sake of global forest productivity is more than fivefold greater than global conservation costs. Science, this issue p. 196 Global forest inventory records suggest that biodiversity loss would result in a decline in forest productivity worldwide. INTRODUCTION The biodiversity-productivity relationship (BPR; the effect of biodiversity on ecosystem productivity) is foundational to our understanding of the global extinction crisis and its impacts on the functioning of natural ecosystems. The BPR has been a prominent research topic within ecology in recent decades, but it is only recently that we have begun to develop a global perspective. RATIONALE Forests are the most important global repositories of terrestrial biodiversity, but deforestation, forest degradation, climate change, and other factors are threatening approximately one half of tree species worldwide. Although there have been substantial efforts to strengthen the preservation and sustainable use of forest biodiversity throughout the globe, the consequences of this diversity loss pose a major uncertainty for ongoing international forest management and conservation efforts. The forest BPR represents a critical missing link for accurate valuation of global biodiversity and successful integration of biological conservation and socioeconomic development. Until now, there have been limited tree-based diversity experiments, and the forest BPR has only been explored within regional-scale observational studies. Thus, the strength and spatial variability of this relationship remains unexplored at a global scale. RESULTS We explored the effect of tree species richness on tree volume productivity at the global scale using repeated forest inventories from 777,126 permanent sample plots in 44 countries containing more than 30 million trees from 8737 species spanning most of the global terrestrial biomes. Our findings reveal a consistent positive concave-down effect of biodiversity on forest productivity across the world, showing that a continued biodiversity loss would result in an accelerating decline in forest productivity worldwide. The BPR shows considerable geospatial variation across the world. The same percentage of biodiversity loss would lead to a greater relative (that is, percentage) productivity decline in the boreal forests of North America, Northeastern Europe, Central Siberia, East Asia, and scattered regions of South-central Africa and South-central Asia. In the Amazon, West and Southeastern Africa, Southern China, Myanmar, Nepal, and the Malay Archipelago, however, the same percentage of biodiversity loss would lead to greater absolute productivity decline. CONCLUSION Our findings highlight the negative effect of biodiversity loss on forest productivity and the potential benefits from the transition of monocultures to mixed-species stands in forestry practices. The BPR we discover across forest ecosystems worldwide corresponds well with recent theoretical advances, as well as with experimental and observational studies on forest and nonforest ecosystems. On the basis of this relationship, the ongoing species loss in forest ecosystems worldwide could substantially reduce forest productivity and thereby forest carbon absorption rate to compromise the global forest carbon sink. We further estimate that the economic value of biodiversity in maintaining commercial forest productivity alone is


Oecologia | 2010

Fine root decomposition rates do not mirror those of leaf litter among temperate tree species

Sarah E. Hobbie; Jacek Oleksyn; David M. Eissenstat; Peter B. Reich

166 billion to

Collaboration


Dive into the Jacek Oleksyn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Piotr Karolewski

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marian J. Giertych

University of Zielona Góra

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David M. Eissenstat

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roma Zytkowiak

Polish Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge