Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacek R. Wisniewski is active.

Publication


Featured researches published by Jacek R. Wisniewski.


Nature Methods | 2009

Universal sample preparation method for proteome analysis

Jacek R. Wisniewski; Alexandre Zougman; Nagarjuna Nagaraj; Matthias Mann

We describe a method, filter-aided sample preparation (FASP), which combines the advantages of in-gel and in-solution digestion for mass spectrometry–based proteomics. We completely solubilized the proteome in sodium dodecyl sulfate, which we then exchanged by urea on a standard filtration device. Peptides eluted after digestion on the filter were pure, allowing single-run analyses of organelles and an unprecedented depth of proteome coverage.


Molecular Systems Biology | 2014

Deep proteome and transcriptome mapping of a human cancer cell line

Nagarjuna Nagaraj; Jacek R. Wisniewski; Tamar Geiger; Juergen Cox; Martin Kircher; Janet Kelso; Svante Pääbo; Matthias Mann

While the number and identity of proteins expressed in a single human cell type is currently unknown, this fundamental question can be addressed by advanced mass spectrometry (MS)‐based proteomics. Online liquid chromatography coupled to high‐resolution MS and MS/MS yielded 166 420 peptides with unique amino‐acid sequence from HeLa cells. These peptides identified 10 255 different human proteins encoded by 9207 human genes, providing a lower limit on the proteome in this cancer cell line. Deep transcriptome sequencing revealed transcripts for nearly all detected proteins. We calculate copy numbers for the expressed proteins and show that the abundances of >90% of them are within a factor 60 of the median protein expression level. Comparisons of the proteome and the transcriptome, and analysis of protein complex databases and GO categories, suggest that we achieved deep coverage of the functional transcriptome and the proteome of a single cell type.


Nature Methods | 2010

Super-SILAC mix for quantitative proteomics of human tumor tissue

Tamar Geiger; Juergen Cox; Paweł Ostasiewicz; Jacek R. Wisniewski; Matthias Mann

We describe a method to accurately quantify human tumor proteomes by combining a mixture of five stable-isotope labeling by amino acids in cell culture (SILAC)-labeled cell lines with human carcinoma tissue. This generated hundreds of thousands of isotopically labeled peptides in appropriate amounts to serve as internal standards for mass spectrometry–based analysis. By decoupling the labeling from the measurement, this super-SILAC method broadens the scope of SILAC-based proteomics.


Journal of Proteome Research | 2010

Brain Phosphoproteome Obtained by a FASP-Based Method Reveals Plasma Membrane Protein Topology

Jacek R. Wisniewski; Nagarjuna Nagaraj; Alexandre Zougman; Florian Gnad; Matthias Mann

Taking advantage of the recently developed Filter Assisted Sample Preparation (FASP) method for sample preparation, we performed an in-depth analysis of phosphorylation sites in mouse brain. To maximize the number of detected phosphorylation sites, we fractionated proteins by size exclusion chromatography (SEC) or separated tryptic peptides on an anion exchanger (SAX) prior or after the TiO(2)-based phosphopeptide enrichment, respectively. SEC allowed analysis of minute tissue samples (1 mg total protein), and resulted in identification of more than 4000 sites in a single experiment, comprising eight fractions. SAX in a pipet tip format offered a convenient and rapid way to fractionate phosphopeptides and mapped more than 5000 sites in a single six fraction experiment. To enrich peptides containing phosphotyrosine residues, we describe a filter aided antibody capturing and elution (FACE) method that requires only the uncoupled instead of resin-immobilized capture reagent. In total, we identified 12,035 phosphorylation sites on 4579 brain proteins of which 8446 are novel. Gene Ontology annotation reveals that 23% of identified sites are located on plasma membrane proteins, including a large number of ion channels and transporters. Together with the glycosylation sites from a recent large-scale study, they can confirm or correct predicted membrane topologies of these proteins, as we show for the examples calcium channels and glutamate receptors.


Journal of Proteome Research | 2011

High Recovery FASP Applied to the Proteomic Analysis of Microdissected Formalin Fixed Paraffin Embedded Cancer Tissues Retrieves Known Colon Cancer Markers

Jacek R. Wisniewski; Paweł Ostasiewicz; Matthias Mann

Proteomic analysis of samples isolated by laser capture microdissection from clinical specimens requires sample preparation and fractionation methods suitable for small amounts of protein. Here we describe a streamlined filter-aided sample preparation (FASP) workflow that allows efficient analysis of lysates from low numbers of cells. Addition of carrier substances such as polyethylene glycol or dextran to the processed samples improves the peptide yields in the low to submicrogram range. In a single LC-MS/MS run, analyses of 500, 1000, and 3000 cells allowed identification of 905, 1536, and 2055 proteins, respectively. Incorporation of an additional SAX fractionation step at somewhat higher amounts enabled the analysis of formalin fixed and paraffin embedded human tissues prepared by LCM to a depth of 3600-4400 proteins per single experiment. We applied this workflow to compare archival neoplastic and matched normal colonic mucosa cancer specimens for three patients. Label-free quantification of more than 6000 proteins verified this technology through the differential expression of 30 known colon cancer markers. These included Carcino-Embryonic Antigen (CEA), the most widely used colon cancer marker, complement decay accelerating factor (DAF, CD55) and Metastasis-associated in colon cancer protein 1 (MACC1). Concordant with literature knowledge, mucin 1 was overexpressed and mucin 2 underexpressed in all three patients. These results show that FASP is suitable for the low level analysis of microdissected tissue and that it has the potential for exploration of clinical samples for biomarker and drug target discovery.


Journal of Medicinal Chemistry | 2012

Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions.

Maria Karlgren; Anna Vildhede; Ulf Norinder; Jacek R. Wisniewski; Emi Kimoto; Yurong Lai; Ulf Haglund; Per Artursson

The hepatic organic anion transporting polypeptides (OATPs) influence the pharmacokinetics of several drug classes and are involved in many clinical drug–drug interactions. Predicting potential interactions with OATPs is, therefore, of value. Here, we developed in vitro and in silico models for identification and prediction of specific and general inhibitors of OATP1B1, OATP1B3, and OATP2B1. The maximal transport activity (MTA) of each OATP in human liver was predicted from transport kinetics and protein quantification. We then used MTA to predict the effects of a subset of inhibitors on atorvastatin uptake in vivo. Using a data set of 225 drug-like compounds, 91 OATP inhibitors were identified. In silico models indicated that lipophilicity and polar surface area are key molecular features of OATP inhibition. MTA predictions identified OATP1B1 and OATP1B3 as major determinants of atorvastatin uptake in vivo. The relative contributions to overall hepatic uptake varied with isoform specificities of the inhibitors.


Journal of Proteome Research | 2010

Proteome, Phosphoproteome, and N-Glycoproteome Are Quantitatively Preserved in Formalin-Fixed Paraffin-Embedded Tissue and Analyzable by High-Resolution Mass Spectrometry

Paweł Ostasiewicz; Dorota F. Zielinska; Matthias Mann; Jacek R. Wisniewski

Tissue samples in biobanks are typically formalin-fixed and paraffin-embedded (FFPE), in which form they are preserved for decades. It has only recently been shown that proteins in FFPE tissues can be identified by mass spectrometry-based proteomics but analysis of post-translational modifications is thought to be difficult or impossible. The filter aided sample preparation (FASP) method can analyze proteomic samples solubilized in high concentrations of SDS and we use this feature to develop a simple protocol for FFPE analysis. Combination with simple pipet-tip based peptide fractionation identified about 5000 mouse liver proteins in 24 h measurement time-the same as in fresh tissue. Results from the FFPE-FASP procedure do not indicate any discernible changes due to storage time, hematoxylin staining or laser capture microdissection. We compared fresh against FFPE tissue using the SILAC mouse and found no significant qualitative or quantitative differences between these samples either at the protein or the peptide level. Application of our FFPE-FASP protocol to phosphorylation and N-glycosylation pinpointed nearly 5000 phosphosites and 1500 N-glycosylation sites. Analysis of FFPE tissue of the SILAC mouse revealed that these post-translational modifications were quantitatively preserved. Thus, FFPE biobank material can be analyzed by quantitative proteomics at the level of proteins and post-translational modifications.


Analytical Biochemistry | 2011

Comparison of ultrafiltration units for proteomic and N-glycoproteomic analysis by the filter-aided sample preparation method

Jacek R. Wisniewski; Dorota F. Zielinska; Matthias Mann

The filter-aided sample preparation (FASP) method allows gel-free processing of biological samples solubilized with detergents for proteomic analysis by mass spectrometry. In FASP detergents are removed by ultrafiltration, and after protein digestion peptides are separated from undigested material. Here we compare the effectiveness of different filtration devices for analysis of proteomes and glycoproteomes. We show that Microcon and Vivacon filtration units with nominal molecular weight cutoffs of 30,000 and 50,000 (30 and 50k, respectively) are equally suitable for FASP, whereas Microcon 30k units are most appropriate for mapping of N-glycosylation sites. The use of filters with these relatively large cutoffs facilitates depletion of detergents.


Journal of Proteome Research | 2008

Detergent-based but gel-free method allows identification of several hundred membrane proteins in single LC-MS runs.

Nagarjuna Nagaraj; Ai-ping Lu; Matthias Mann; Jacek R. Wisniewski

Detergents are indispensable solubilizing agents in the purification and analysis of membrane proteins. For mass spectrometric identification of proteins, it is essential that detergents are removed prior to analysis, necessitating an in-gel digestion step. Here, we report a procedure that allows use of detergents and in-solution digestion of proteins. Crude membrane preparations from mouse brain were solubilized with Triton X-100, CHAPS, or SDS, and the detergents were depleted from the membrane proteins using a desalting column equilibrated with 8 M urea. Following digestion with endoproteinase Lys-C, the resulting peptides were analyzed by LC-MS/MS on Linear ion trap-Orbitrap instrument. Applying stringent identification criteria, in single-LC-MS-runs, 1059 +/- 108 proteins, including 797 +/- 43 membrane proteins, were mapped from mouse brain. The identified proteins represented a broad spectrum of neurotransmitter receptors and other ion channels. The general applicability of the method is demonstrated by profiling of membrane proteins from four other mouse organs. Single-run analyses of eye, liver, spleen, and skeletal muscle allowed identification of 522 +/- 9, 610 +/- 7, 777 +/- 8, and 307 +/- 7 membrane proteins. Our results demonstrate that membrane proteins can be analyzed as efficiently as soluble proteins.


Drug Metabolism and Disposition | 2014

Hepatic Uptake of Atorvastatin: Influence of Variability in Transporter Expression on Uptake Clearance and Drug-Drug Interactions

Anna Vildhede; Maria Karlgren; Elin Svedberg; Jacek R. Wisniewski; Yurong Lai; Agneta Norén; Per Artursson

Differences in the expression and function of the organic anion transporting polypeptide (OATP) transporters contribute to interindividual variability in atorvastatin clearance. However, the importance of the bile acid transporter sodium taurocholate cotransporting polypeptide (NTCP, SLC10A1) in atorvastatin uptake clearance (CLupt) is not yet clarified. To elucidate this issue, we investigated the relative contribution of NTCP, OATP1B1, OATP1B3, and OATP2B1 to atorvastatin CLupt in 12 human liver samples. The impact of inhibition on atorvastatin CLupt was also studied, using inhibitors of different isoform specificities. Expression levels of the four transport proteins were quantified by liquid chromatography tandem mass spectrometry. These data, together with atorvastatin in vitro kinetics, were used to predict the maximal transport activity (MTA) and interindividual differences in CLupt of each transporter in vivo. Subsequently, hepatic uptake impairment on coadministration of five clinically interacting drugs was predicted using in vitro inhibitory potencies. NTCP and OATP protein expression varied 3.7- to 32-fold among the 12 sample donors. The rank order in expression was OATP1B1 > OATP1B3 ≈ NTCP ≈ OATP2B1. NTCP was found to be of minor importance in atorvastatin disposition. Instead, OATP1B1 and OATP1B3 were confirmed as the major atorvastatin uptake transporters. The average contribution to atorvastatin uptake was OATP1B1 > OATP1B3 >> OATP2B1 > NTCP, although this rank order varied among individuals. The interindividual differences in transporter expression and CLupt resulted in marked differences in drug-drug interactions due to isoform-specific inhibition. We conclude that this variation should be considered in in vitro to in vivo extrapolations.

Collaboration


Dive into the Jacek R. Wisniewski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paweł Ostasiewicz

Wrocław Medical University

View shared research outputs
Top Co-Authors

Avatar

Piotr Ziółkowski

Wrocław Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge