Jacinta B. Williams
Merck & Co.
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jacinta B. Williams.
Neuron | 1990
Richard Swanson; John Marshall; Jeffrey S. Smith; Jacinta B. Williams; Mary B. Boyle; Kimberly Folander; Christopher J. Luneau; Joanne Antanavage; Carlos Oliva; Susan A. Buhrow; Carl Bennet; Robert B. Stein; Leonard K. Kaczmarek
Rat brain cDNA and genomic clones encoding three K+ channels, Kv1, Kv2, and Kv3, have been isolated by screening with Shaker probes and encode proteins of 602, 530, and 525 amino acids. Each of the deduced protein sequences contains six hydrophobic domains (including an S4-type region characteristic of many voltage-gated channels) and are 68%-72% identical to each other overall. Transcripts of approximately 3.5, approximately 6.5, and approximately 9.5 kb encode Kv1, Kv2, and Kv3, respectively. The Kv2 mRNA is expressed only in brain, whereas the Kv1 and Kv3 transcripts are found in several other tissues as well. There is a marked increase in the amount of Kv1 mRNA in cardiac tissue during development and a similar, but less pronounced, increase of both this mRNA and the Kv2 transcript in brain. RNAs synthesized in vitro from the three clones induce voltage- and time-dependent, delayed rectifier-like K+ currents when injected into Xenopus oocytes, demonstrating that they encode functional K+ channels.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Cyrille Sur; Pierre J. Mallorga; Marion Wittmann; Marlene A. Jacobson; Danette Pascarella; Jacinta B. Williams; Philip E. Brandish; Douglas J. Pettibone; Edward M. Scolnick; P. Jeffrey Conn
The molecular and neuronal substrates conferring on clozapine its unique and superior efficacy in the treatment of schizophrenia remain elusive. The interaction of clozapine with many G protein-coupled receptors is well documented but less is known about its biologically active metabolite, N-desmethylclozapine. Recent clinical and preclinical evidences of the antipsychotic activity of the muscarinic agonist xanomeline prompted us to investigate the effects of N-desmethylclozapine on cloned human M1-M5 muscarinic receptors. N-desmethylclozapine preferentially bound to M1 muscarinic receptors with an IC50 of 55 nM and was a more potent partial agonist (EC50, 115 nM and 50% of acetylcholine response) at this receptor than clozapine. Furthermore, pharmacological and site-directed mutagenesis studies suggested that N-desmethylclozapine preferentially activated M1 receptors by interacting with a site that does not fully overlap with the acetylcholine orthosteric site. As hypofunction of N-methyl-d-aspartate (NMDA) receptor-driven neuronal ensembles has been implicated in psychotic disorders, the neuronal activity of N-desmethylclozapine was electrophysiologically investigated in hippocampal rat brain slices. N-desmethylclozapine was shown to dose-dependently potentiate NMDA receptor currents in CA1 pyramidal cells by 53% at 100 nM, an effect largely mediated by activation of muscarinic receptors. Altogether, our observations provide direct evidence that the brain penetrant metabolite N-desmethylclozapine is a potent, allosteric agonist at human M1 receptors and is able to potentiate hippocampal NMDA receptor currents through M1 receptor activation. These observations raise the possibility that N-desmethylclozapine contributes to clozapines clinical activity in schizophrenics through modulation of both muscarinic and glutamatergic neurotransmission.
Neuropharmacology | 1995
Sara L. Shepheard; David J Williamson; Jacinta B. Williams; R.G. Hill; Richard Hargreaves
Dural plasma extravasation produced by electrical stimulation of the trigeminal ganglion was measured in rats and the concomitant expression of c-fos mRNA produced in the trigeminal nucleus caudalis (NtV) was measured using in situ hybridization techniques. The non-peptide NK1 receptor selective antagonist CP-99,994 (1-3000 micrograms kg-1) and the 5HT1D receptor agonist sumatriptan (1-1000 micrograms kg-1) reduced dural plasma extravasation dose-dependently with ID50S of 52 micrograms kg-1 and 30 micrograms kg-1 respectively. CP-99,994 (1000 micrograms kg-1). a compound known to have good brain penetration, decreased c-fos mRNA expression in the NtV by 37 +/- 7% without disruption of the blood brain barrier (BBB). Sumatriptan (1000 micrograms kg-1), known to be poorly brain penetrant, had no significant effect on c-fos mRNA expression in the NtV unless the BBB was disrupted by infusion of a hyperosmolar mannitol solution after which sumatriptan decreased c-fos mRNA expression by 65 +/- 11%. The results suggest that brain penetrant NK1 receptor antagonists may have anti-migraine effects peripherally through blockade of dural extravasation and centrally by inhibition of nociceptive pathways. Furthermore the data indicates that the anti-migraine action of sumatriptan must be predominantly peripherally mediated, be it via inhibition of plasma extravasation or direct vasoconstriction, since it had little effect on the activation of neurones in the NtV unless the BBB was disrupted.
Schizophrenia Research | 2004
Jacinta B. Williams; Pierre J. Mallorga; P. Jeffrey Conn; Douglas J. Pettibone; Cyrille Sur
Augmentation strategy in the treatment of schizophrenia with the NMDA receptor co-agonist glycine has demonstrated significant improvement in patient symptoms. Interestingly, the therapeutic efficacy of glycine was more consistent among patients that were not co-administered clozapine suggesting that clozapine modulates glycine levels in brain. Since cerebral glycine concentration in the vicinity of NMDA receptors is thought to be controlled by the glia expressed glycine transporter type 1 (GlyT1), the effects of several typical and atypical antipsychotics on glycine uptake were examined in human placenta choriocarcinoma (JAR) cells expressing human GlyT1a. The selectivity of these compounds was investigated by measuring their inhibitory potency at the closely related glycine transporter type 2 (GlyT2). Typical antipsychotics haloperidol, thioridazine and chlorpromazine non-selectively inhibited [(14)C]glycine uptake mediated by GlyT1a and GlyT2 with potency of 9-21 microM. The atypical antipsychotic, clozapine antagonized glycine transport by human GlyT1a with an IC(50) of 100 microM and was weaker at recombinant GlyT2. Its main metabolites, N-desmethylclozapine and clozapine N-oxide were very weak inhibitors at all glycine transporters. Similarly, olanzapine did not potently block GlyT1a- and GlyT2-mediated uptake. Detailed kinetic analysis of hGlyT1a in the presence and absence of haloperidol and clozapine revealed that both drugs were not competitive inhibitors of glycine uptake. Data also indicated that these compounds did not interact with the Na(+) and Cl(-) sites of hGlyT1a. Our results have revealed the existence of an inhibitory interaction between some antipsychotics and hGlyT1a and raise the possibility that these drugs could interact with GlyT1 function at therapeutic doses.
FEBS Letters | 1991
Christopher J. Luneau; Richard T. Wiedmann; Jeffrey S. Smith; Jacinta B. Williams
The complete amino acid sequence of a potassium channel protein of rat brain, Kv3.2b, plus a partial sequence of a related channel, Kv3.2c, are deduced from molecular cloning of the respective cDNAs. Kv3.2b and Kv3.2c share extensive amino acid sequence identity with a previously identified channel, RKShIIIA[1], before diverging to unique carboxy termini. Probes specific for Kv3.2b and RKShIIIA detect similarly sized mRNAs on Northern blots. These two proteins are encoded by a single gene based on genomic Southern blotting, and therefore arise by alternative splicing. In vitro transcribed mRNA for Kv3.2b induces the expression of outward K+ currents in Xenopus oocytes under voltage‐clamp conditions.
Analytical Biochemistry | 2003
Jacinta B. Williams; Pierre J. Mallorga; Wei Lemaire; David L. Williams; Sang Na; Smita Patel; Jeffrey P Conn; Douglas J. Pettibone; Christopher P. Austin; Cyrille Sur
Human placental choriocarcinoma (JAR) cells endogenously expressing glycine transporter type 1a (GlyT1a) have been cultured in 96-well scintillating microplates to develop a homogenous screening assay for the detection of GlyT1 antagonists. In these microplates uptake of [14C]glycine was time dependent and saturable with a Michaelis-Menten constant (Km) of 27+/-3 microM. The GlyT1 transport inhibitors sarcosine, ALX-5407, and Org-24598 were tested and shown to block [14C]glycine uptake with expected IC50 values of 37.5+/-4.6 microM, 2.8+/-0.6 nM, and 6.9+/-0.9 nM, respectively. The [14C]glycine uptake process was sensitive to membrane Na+ gradient as blockade of membrane Na+/K+-ATPase by ouabain or Na+ exchanger by benzamil-disrupted glycine accumulation in JAR cells. Glycine influx was not affected by concentration of dimethyl sulfoxide up to 2%. The versatility of this technological approach was further confirmed by the characterization of a saturable [14C]taurine uptake in JAR cells. Taurine transport was of high affinity with a Km of 10.2+/-1.7 microM and fully inhibited by ALX-5407 (IC50=522 +/-83 nM). The developed assay is homogenous, rapid, versatile and amenable to automation for the discovery of new neurotransmitter transporter inhibitors.
The Journal of Neuroscience | 2003
Gene G. Kinney; Cyrille Sur; Maryann Burno; Pierre J. Mallorga; Jacinta B. Williams; David J. Figueroa; Marion Wittmann; Wei Lemaire; P. Jeffrey Conn
Proceedings of the National Academy of Sciences of the United States of America | 1991
Christopher J. Luneau; Jacinta B. Williams; J Marshall; E S Levitan; C Oliva; Jeffrey S. Smith; J Antanavage; Kimberly Folander; Robert B. Stein; Richard Swanson
Journal of Pharmacology and Experimental Therapeutics | 2002
Douglas J. Pettibone; J. Fred Hess; Patricia J. Hey; Marlene A. Jacobson; Michael Leviten; Edward V. Lis; Pierre J. Mallorga; Danette Pascarella; Melissa A. Snyder; Jacinta B. Williams; Zhizhen Zeng
Neuropharmacology | 2003
Pierre J. Mallorga; Jacinta B. Williams; Marlene A. Jacobson; Rosemary Marques; Ashok Chaudhary; P. Jeffrey Conn; Douglas J. Pettibone; Cyrille Sur