Jacinta M. McMahon
University of Melbourne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jacinta M. McMahon.
Nature Genetics | 2013
Gemma L. Carvill; Sinéad Heavin; Simone C. Yendle; Jacinta M. McMahon; Brian J. O'Roak; Joseph Cook; Adiba Khan; Michael O. Dorschner; Molly Weaver; Sophie Calvert; Stephen Malone; Geoffrey Wallace; Thorsten Stanley; Ann M. E. Bye; Andrew Bleasel; Katherine B. Howell; Sara Kivity; Mark T. Mackay; Victoria Rodriguez-Casero; Richard Webster; Amos D. Korczyn; Zaid Afawi; Nathanel Zelnick; Tally Lerman-Sagie; Dorit Lev; Rikke S. Møller; Deepak Gill; Danielle M. Andrade; Jeremy L. Freeman; Lynette G. Sadleir
Epileptic encephalopathies are a devastating group of epilepsies with poor prognosis, of which the majority are of unknown etiology. We perform targeted massively parallel resequencing of 19 known and 46 candidate genes for epileptic encephalopathy in 500 affected individuals (cases) to identify new genes involved and to investigate the phenotypic spectrum associated with mutations in known genes. Overall, we identified pathogenic mutations in 10% of our cohort. Six of the 46 candidate genes had 1 or more pathogenic variants, collectively accounting for 3% of our cohort. We show that de novo CHD2 and SYNGAP1 mutations are new causes of epileptic encephalopathies, accounting for 1.2% and 1% of cases, respectively. We also expand the phenotypic spectra explained by SCN1A, SCN2A and SCN8A mutations. To our knowledge, this is the largest cohort of cases with epileptic encephalopathies to undergo targeted resequencing. Implementation of this rapid and efficient method will change diagnosis and understanding of the molecular etiologies of these disorders.
Lancet Neurology | 2006
Samuel F. Berkovic; Louise A. Harkin; Jacinta M. McMahon; James T. Pelekanos; Sameer M. Zuberi; Elaine Wirrell; Deepak Gill; Xenia Iona; John C. Mulley; Ingrid E. Scheffer
BACKGROUND Vaccination, particularly for pertussis, has been implicated as a direct cause of an encephalopathy with refractory seizures and intellectual impairment. We postulated that cases of so-called vaccine encephalopathy could have mutations in the neuronal sodium channel alpha1 subunit gene (SCN1A) because of a clinical resemblance to severe myoclonic epilepsy of infancy (SMEI) for which such mutations have been identified. METHODS We retrospectively studied 14 patients with alleged vaccine encephalopathy in whom the first seizure occurred within 72 h of vaccination. We reviewed the relation to vaccination from source records and assessed the specific epilepsy phenotype. Mutations in SCN1A were identified by PCR amplification and denaturing high performance liquid chromatography analysis, with subsequent sequencing. Parental DNA was examined to ascertain the origin of the mutation. FINDINGS SCN1A mutations were identified in 11 of 14 patients with alleged vaccine encephalopathy; a diagnosis of a specific epilepsy syndrome was made in all 14 cases. Five mutations predicted truncation of the protein and six were missense in conserved regions of the molecule. In all nine cases where parental DNA was available the mutations arose de novo. Clinical-molecular correlation showed mutations in eight of eight cases with phenotypes of SMEI, in three of four cases with borderline SMEI, but not in two cases with Lennox-Gastaut syndrome. INTERPRETATION Cases of alleged vaccine encephalopathy could in fact be a genetically determined epileptic encephalopathy that arose de novo. These findings have important clinical implications for diagnosis and management of encephalopathy and, if confirmed in other cohorts, major societal implications for the general acceptance of vaccination.
Neurology | 2004
N C K Tan; S E Heron; Ingrid E. Scheffer; J T Pelekanos; Jacinta M. McMahon; Danya F. Vears; John C. Mulley; Samuel F. Berkovic
Alteration of ATP-binding cassette subfamily B member 1 transporter (ABCB1) can plausibly cause drug-resistant epilepsy as it influences brain penetration of drugs. The CC genotype at the ABCB1 C3435T polymorphism was reported to be associated with multidrug resistance. A replication study in 401 drug-resistant and 208 drug-responsive subjects with epilepsy showed no significant association between the CC genotype and drug-resistant epilepsy. The authors suggest the initial association may have arisen by chance.
Annals of Neurology | 2011
Mefford Hc; Simone C. Yendle; Cynthia L. Hsu; Joseph Cook; Eileen Geraghty; Jacinta M. McMahon; Orvar Eeg-Olofsson; Lynette G. Sadleir; Deepak Gill; Bruria Ben-Zeev; Tally Lerman-Sagie; Mark T. Mackay; Jeremy L. Freeman; Eva Andermann; James T. Pelakanos; Ian Andrews; Geoffrey Wallace; Evan E. Eichler; Samuel F. Berkovic; Ingrid E. Scheffer
Rare copy number variants (CNVs)—deletions and duplications—have recently been established as important risk factors for both generalized and focal epilepsies. A systematic assessment of the role of CNVs in epileptic encephalopathies, the most devastating and often etiologically obscure group of epilepsies, has not been performed.
Epilepsia | 2009
Carla Marini; Ingrid E. Scheffer; Rima Nabbout; Davide Mei; Kathy Cox; Leanne M. Dibbens; Jacinta M. McMahon; Xenia Iona; Rochio Sanchez Carpintero; Maurizio Elia; Maria Roberta Cilio; Nicola Specchio; Lucio Giordano; Pasquale Striano; Elena Gennaro; J. Helen Cross; Sara Kivity; Miriam Y. Neufeld; Zaid Afawi; Eva Andermann; Daniel Keene; Olivier Dulac; Federico Zara; Samuel F. Berkovic; Renzo Guerrini; John C. Mulley
Objective: We aimed to determine the type, frequency, and size of microchromosomal copy number variations (CNVs) affecting the neuronal sodium channel α 1 subunit gene (SCN1A) in Dravet syndrome (DS), other epileptic encephalopathies, and generalized epilepsy with febrile seizures plus (GEFS+).
Neurology | 2014
Gemma L. Carvill; Sarah Weckhuysen; Jacinta M. McMahon; Corinna Hartmann; Rikke S. Møller; Helle Hjalgrim; Joseph Cook; Eileen Geraghty; Brian J. O'Roak; Steven Petrou; Alison L. Clarke; Deepak Gill; Lynette G. Sadleir; Hiltrud Muhle; Sarah von Spiczak; Marina Nikanorova; Bree L. Hodgson; Elena V. Gazina; Arvid Suls; Jay Shendure; Leanne M. Dibbens; Ingo Helbig; Samuel F. Berkovic; Ingrid E. Scheffer; Mefford Hc
Objective: To determine the genes underlying Dravet syndrome in patients who do not have an SCN1A mutation on routine testing. Methods: We performed whole-exome sequencing in 13 SCN1A-negative patients with Dravet syndrome and targeted resequencing in 67 additional patients to identify new genes for this disorder. Results: We detected disease-causing mutations in 2 novel genes for Dravet syndrome, with mutations in GABRA1 in 4 cases and STXBP1 in 3. Furthermore, we identified 3 patients with previously undetected SCN1A mutations, suggesting that SCN1A mutations occur in even more than the currently accepted ∼75% of cases. Conclusions: We show that GABRA1 and STXBP1 make a significant contribution to Dravet syndrome after SCN1A abnormalities have been excluded. Our results have important implications for diagnostic testing, clinical management, and genetic counseling of patients with this devastating disorder and their families.
Brain | 2011
Claudia B. Catarino; Joan Y. W. Liu; Ioannis Liagkouras; Vaneesha Gibbons; Robyn Labrum; Rachael Ellis; Cathy Woodward; Mary B. Davis; Shelagh Smith; J. Helen Cross; Richard Appleton; Simone C. Yendle; Jacinta M. McMahon; Susannah T. Bellows; Ts Jacques; Sameer M. Zuberi; Matthias J. Koepp; Lillian Martinian; Ingrid E. Scheffer; Maria Thom; Sanjay M. Sisodiya
Dravet syndrome is an epilepsy syndrome of infantile onset, frequently caused by SCN1A mutations or deletions. Its prevalence, long-term evolution in adults and neuropathology are not well known. We identified a series of 22 adult patients, including three adult post-mortem cases with Dravet syndrome. For all patients, we reviewed the clinical history, seizure types and frequency, antiepileptic drugs, cognitive, social and functional outcome and results of investigations. A systematic neuropathology study was performed, with post-mortem material from three adult cases with Dravet syndrome, in comparison with controls and a range of relevant paediatric tissue. Twenty-two adults with Dravet syndrome, 10 female, were included, median age 39 years (range 20–66). SCN1A structural variation was found in 60% of the adult Dravet patients tested, including one post-mortem case with DNA extracted from brain tissue. Novel mutations were described for 11 adult patients; one patient had three SCN1A mutations. Features of Dravet syndrome in adulthood include multiple seizure types despite polytherapy, and age-dependent evolution in seizure semiology and electroencephalographic pattern. Fever sensitivity persisted through adulthood in 11 cases. Neurological decline occurred in adulthood with cognitive and motor deterioration. Dysphagia may develop in or after the fourth decade of life, leading to significant morbidity, or death. The correct diagnosis at an older age made an impact at several levels. Treatment changes improved seizure control even after years of drug resistance in all three cases with sufficient follow-up after drug changes were instituted; better control led to significant improvement in cognitive performance and quality of life in adulthood in two cases. There was no histopathological hallmark feature of Dravet syndrome in this series. Strikingly, there was remarkable preservation of neurons and interneurons in the neocortex and hippocampi of Dravet adult post-mortem cases. Our study provides evidence that Dravet syndrome is at least in part an epileptic encephalopathy.
Epilepsia | 2004
Carla Marini; Ingrid E. Scheffer; Kathryn M. Crossland; Bronwyn E. Grinton; Fiona Phillips; Jacinta M. McMahon; Samantha J. Turner; Joanne T. Dean; Sara Kivity; Aziz Mazarib; Miriam Y. Neufeld; Amos D. Korczyn; Louise A. Harkin; Leanne M. Dibbens; Robyn H. Wallace; John C. Mulley; Samuel F. Berkovic
Summary: Purpose: In families with idiopathic generalized epilepsy (IGE), multiple IGE subsyndromes may occur. We performed a genetic study of IGE families to clarify the genetic relation of the IGE subsyndromes and to improve understanding of the mode(s) of inheritance.
Neurology | 2015
Jan Larsen; Gemma L. Carvill; Elena Gardella; Gerhard Kluger; Gudrun Schmiedel; Nina Barišić; Christel Depienne; Eva H. Brilstra; Yuan Mang; J. E. K. Nielsen; Martin Kirkpatrick; David Goudie; Rebecca Goldman; Johanna A. Jähn; Birgit Jepsen; Deepak Gill; Miriam Döcker; Saskia Biskup; Jacinta M. McMahon; Bobby P. C. Koeleman; Mandy Harris; Kees P. J. Braun; Carolien G.F. de Kovel; Carla Marini; Nicola Specchio; Tania Djémié; Sarah Weckhuysen; Niels Tommerup; M. Troncoso; L. Troncoso
Objective: SCN8A encodes the sodium channel voltage-gated α8-subunit (Nav1.6). SCN8A mutations have recently been associated with epilepsy and neurodevelopmental disorders. We aimed to delineate the phenotype associated with SCN8A mutations. Methods: We used high-throughput sequence analysis of the SCN8A gene in 683 patients with a range of epileptic encephalopathies. In addition, we ascertained cases with SCN8A mutations from other centers. A detailed clinical history was obtained together with a review of EEG and imaging data. Results: Seventeen patients with de novo heterozygous mutations of SCN8A were studied. Seizure onset occurred at a mean age of 5 months (range: 1 day to 18 months); in general, seizures were not triggered by fever. Fifteen of 17 patients had multiple seizure types including focal, tonic, clonic, myoclonic and absence seizures, and epileptic spasms; seizures were refractory to antiepileptic therapy. Development was normal in 12 patients and slowed after seizure onset, often with regression; 5 patients had delayed development from birth. All patients developed intellectual disability, ranging from mild to severe. Motor manifestations were prominent including hypotonia, dystonia, hyperreflexia, and ataxia. EEG findings comprised moderate to severe background slowing with focal or multifocal epileptiform discharges. Conclusion: SCN8A encephalopathy presents in infancy with multiple seizure types including focal seizures and spasms in some cases. Outcome is often poor and includes hypotonia and movement disorders. The majority of mutations arise de novo, although we observed a single case of somatic mosaicism in an unaffected parent.
Neurology | 2006
J. C. Mulley; Paul V. Nelson; S. Guerrero; Leanne M. Dibbens; Xenia Iona; Jacinta M. McMahon; Louise A. Harkin; J. Schouten; Sui Yu; Samuel F. Berkovic; Ingrid E. Scheffer
We examined cases of severe myoclonic epilepsy of infancy (SMEI) for exon deletions or duplications within the sodium channel SCN1A gene by multiplex ligation-dependent probe amplification. Two of 13 patients (15%) who fulfilled the strict clinical definition of SMEI but without SCN1A coding or splicing mutations had exonic deletions of SCN1A.