Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jack A. Elias is active.

Publication


Featured researches published by Jack A. Elias.


Journal of Clinical Investigation | 1999

Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production

Zhou Zhu; Robert J. Homer; Zhonde Wang; Qingsheng Chen; Gregory P. Geba; Jingming Wang; Yong Zhang; Jack A. Elias

Interleukin (IL)-13 is a pleiotropic cytokine produced in large quantities by activated CD4(+) Th2 lymphocytes. To define further its potential in vivo effector functions, the Clara cell 10-kDa protein promoter was used to express IL-13 selectively in the lung, and the phenotype of the resulting transgenic mice was characterized. In contrast to transgene-negative littermates, the lungs of transgene-positive mice contained an inflammatory response around small and large airways and in the surrounding parenchyma. It was mononuclear in nature and contained significant numbers of eosinophils and enlarged and occasionally multinucleated macrophages. Airway epithelial cell hypertrophy, mucus cell metaplasia, the hyperproduction of neutral and acidic mucus, the deposition of Charcot-Leyden-like crystals, and subepithelial airway fibrosis were also prominently noted. Eotaxin protein and mRNA were also present in large quantities in the lungs of the transgene-positive, but not the transgene-negative, mice. IL-4, IL-5, granulocyte-macrophage colony-stimulating factor, and monocyte chemoattractant protein-5 were not similarly detected. Physiological evaluations revealed significant increases in baseline airways resistance and airways hyperresponsiveness (AHR) to methacholine in transgene-positive animals. Thus, the targeted pulmonary expression of IL-13 causes a mononuclear and eosinophilic inflammatory response, mucus cell metaplasia, the deposition of Charcot-Leyden-like crystals, airway fibrosis, eotaxin production, airways obstruction, and nonspecific AHR. IL-13 may play an important role in the pathogenesis of similar responses in asthma or other Th2-polarized tissue responses.


Journal of Clinical Investigation | 1999

Airway remodeling in asthma.

Jack A. Elias; Zhou Zhu; Geoffrey L. Chupp; Robert J. Homer

Asthma is estimated to affect 15 million people in the United States. After declining in the 1970s, its prevalence, morbidity, and mortality have increased since the 1980s. It now affects 1 in 7 children in the United Kingdom, and is the most frequent reason for preventable childhood hospitalizations in the United States. In 1990, total asthma-related health care costs were estimated at 6.2 billion dollars in the United States. This figure exceeded 10 billion dollars by 1995.


Journal of Clinical Investigation | 2000

Inducible targeting of IL-13 to the adult lung causes matrix metalloproteinase– and cathepsin-dependent emphysema

Tao Zheng; Zhou Zhu; Zhongde Wang; Robert J. Homer; Bing Ma; Richard J. Riese; Harold A. Chapman; Steven D. Shapiro; Jack A. Elias

Cigarette smoke exposure is the major cause of chronic obstructive pulmonary disease (COPD). However, only a minority of smokers develop significant COPD, and patients with asthma or asthma-like airway hyperresponsiveness or eosinophilia experience accelerated loss of lung function after cigarette smoke exposure. Pulmonary inflammation is a characteristic feature of lungs from patients with COPD. Surprisingly, the mediators of this inflammation and their contributions to the pathogenesis and varied natural history of COPD are not well defined. Here we show that IL-13, a critical cytokine in asthma, causes emphysema with enhanced lung volumes and compliance, mucus metaplasia, and inflammation, when inducibly overexpressed in the adult murine lung. MMP-2, -9, -12, -13, and -14 and cathepsins B, S, L, H, and K were induced by IL-13 in this setting. In addition, treatment with MMP or cysteine proteinase antagonists significantly decreased the emphysema and inflammation, but not the mucus in these animals. These studies demonstrate that IL-13 is a potent stimulator of MMP and cathepsin-based proteolytic pathways in the lung. They also demonstrate that IL-13 causes emphysema via a MMP- and cathepsin-dependent mechanism(s) and highlight common mechanisms that may underlie COPD and asthma.


Nature Medicine | 2004

Vascular endothelial growth factor (VEGF) induces remodeling and enhances TH2-mediated sensitization and inflammation in the lung

Chun Geun Lee; Holger Link; Peter Baluk; Robert J. Homer; Svetlana P. Chapoval; Vineet Bhandari; Min Jong Kang; Lauren Cohn; Yoon Keun Kim; Donald M. McDonald; Jack A. Elias

Exaggerated levels of VEGF (vascular endothelial growth factor) are present in persons with asthma, but the role(s) of VEGF in normal and asthmatic lungs has not been defined. We generated lung-targeted VEGF165 transgenic mice and evaluated the role of VEGF in T-helper type 2 cell (TH2)-mediated inflammation. In these mice, VEGF induced, through IL-13–dependent and –independent pathways, an asthma-like phenotype with inflammation, parenchymal and vascular remodeling, edema, mucus metaplasia, myocyte hyperplasia and airway hyper-responsiveness. VEGF also enhanced respiratory antigen sensitization and TH2 inflammation and increased the number of activated DC2 dendritic cells. In antigen-induced inflammation, VEGF was produced by epithelial cells and preferentially by TH2 versus TH1 cells. In this setting, it had a critical role in TH2 inflammation, cytokine production and physiologic dysregulation. Thus, VEGF is a mediator of vascular and extravascular remodeling and inflammation that enhances antigen sensitization and is crucial in adaptive TH2 inflammation. VEGF regulation may be therapeutic in asthma and other TH2 disorders.


Annual Review of Physiology | 2011

Role of Chitin and Chitinase/Chitinase-Like Proteins in Inflammation, Tissue Remodeling, and Injury

Chun Geun Lee; Carla A. Da Silva; Charles S. Dela Cruz; Farida Ahangari; Bing Ma; Min-Jong Kang; Chuan-Hua He; Seyedtaghi Takyar; Jack A. Elias

The 18 glycosyl hydrolase family of chitinases is an ancient gene family that is widely expressed from prokaryotes to eukaryotes. In mammals, despite the absence of endogenous chitin, a number of chitinases and chitinase-like proteins (C/CLPs) have been identified. However, their roles have only recently begun to be elucidated. Acidic mammalian chitinase (AMCase) inhibits chitin-induced innate inflammation; augments chitin-free, allergen-induced Th2 inflammation; and mediates effector functions of IL-13. The CLPs BRP-39/YKL-40 (also termed chitinase 3-like 1) inhibit oxidant-induced lung injury, augments adaptive Th2 immunity, regulates apoptosis, stimulates alternative macrophage activation, and contributes to fibrosis and wound healing. In accord with these findings, levels of YKL-40 in the lung and serum are increased in asthma and other inflammatory and remodeling disorders and often correlate with disease severity. Our understanding of the roles of C/CLPs in inflammation, tissue remodeling, and tissue injury in health and disease is reviewed below.


The New England Journal of Medicine | 2008

Effect of variation in CHI3L1 on serum YKL-40 level, risk of asthma, and lung function.

Carole Ober; Zheng Tan; Ying Sun; Jennifer Possick; Lin Pan; Raluca Nicolae; Sadie Radford; Rodney Parry; Andrea Heinzmann; Klaus A. Deichmann; Lucille A. Lester; James E. Gern; Robert F. Lemanske; Dan L. Nicolae; Jack A. Elias; Geoffrey L. Chupp

BACKGROUND The chitinase-like protein YKL-40 is involved in inflammation and tissue remodeling. We recently showed that serum YKL-40 levels were elevated in patients with asthma and were correlated with severity, thickening of the subepithelial basement membrane, and pulmonary function. We hypothesized that single-nucleotide polymorphisms (SNPs) that affect YKL-40 levels also influence asthma status and lung function. METHODS We carried out a genomewide association study of serum YKL-40 levels in a founder population of European descent, the Hutterites, and then tested for an association between an implicated SNP and asthma and lung function. One associated variant was genotyped in a birth cohort at high risk for asthma, in which YKL-40 levels were measured from birth through 5 years of age, and in two populations of unrelated case patients of European descent with asthma and controls. RESULTS A promoter SNP (-131C-->G) in CHI3L1, the chitinase 3-like 1 gene encoding YKL-40, was associated with elevated serum YKL-40 levels (P=1.1 x 10(-13)), asthma (P=0.047), bronchial hyperresponsiveness (P=0.002), and measures of pulmonary function (P=0.046 to 0.002) in the Hutterites. The same SNP could be used to predict the presence of asthma in the two case-control populations (combined P=1.2 x 10(-5)) and serum YKL-40 levels at birth (in cord-blood specimens) through 5 years of age in the birth cohort (P=8.9 x 10(-3) to 2.5 x 10(-4)). CONCLUSIONS CHI3L1 is a susceptibility gene for asthma, bronchial hyperresponsiveness, and reduced lung function, and elevated circulating YKL-40 levels are a biomarker for asthma and decline in lung function.


Journal of Clinical Investigation | 2003

New insights into the pathogenesis of asthma

Jack A. Elias; Chun Geun Lee; Tao Zheng; Bing Ma; Robert J. Homer; Zhou Zhu

Asthma is a disease whose ability to cause episodicsymptomatology has been appreciated since antiqui-ty. Although the fine points of the definition can bedebated, it is reasonable to think of asthma as a pul-monary disorder characterized by the generalizedreversible obstruction of airflow and to definereversibility as a greater than 12% increase in thepatient’s forced expiratory volume in 1 second (FEV


Journal of Experimental Medicine | 2004

Early Growth Response Gene 1–mediated Apoptosis Is Essential for Transforming Growth Factor β1–induced Pulmonary Fibrosis

Chun Geun Lee; Soo Jung Cho; Min Jong Kang; Svetlana P. Chapoval; Patty J. Lee; Paul W. Noble; Teshome Yehualaeshet; Binfeng Lu; Richard A. Flavell; Jeffrey Milbrandt; Robert J. Homer; Jack A. Elias

Fibrosis and apoptosis are juxtaposed in pulmonary disorders such as asthma and the interstitial diseases, and transforming growth factor (TGF)-β1 has been implicated in the pathogenesis of these responses. However, the in vivo effector functions of TGF-β1 in the lung and its roles in the pathogenesis of these responses are not completely understood. In addition, the relationships between apoptosis and other TGF-β1–induced responses have not been defined. To address these issues, we targeted bioactive TGF-β1 to the murine lung using a novel externally regulatable, triple transgenic system. TGF-β1 produced a transient wave of epithelial apoptosis that was followed by mononuclear-rich inflammation, tissue fibrosis, myofibroblast and myocyte hyperplasia, and septal rupture with honeycombing. Studies of these mice highlighted the reversibility of this fibrotic response. They also demonstrated that a null mutation of early growth response gene (Egr)-1 or caspase inhibition blocked TGF-β1–induced apoptosis. Interestingly, both interventions markedly ameliorated TGF-β1–induced fibrosis and alveolar remodeling. These studies illustrate the complex effects of TGF-β1 in vivo and define the critical role of Egr-1 in the TGF-β1 phenotype. They also demonstrate that Egr-1–mediated apoptosis is a prerequisite for TGF-β1–induced fibrosis and remodeling.


Journal of Clinical Investigation | 2002

Overlapping and enzyme-specific contributions of matrix metalloproteinases-9 and -12 in IL-13–induced inflammation and remodeling

Sophie Lanone; Tao Zheng; Zhou Zhu; Wei Liu; Chun Geun Lee; Bing Ma; Qingsheng Chen; Robert J. Homer; Jingming Wang; Lesley Rabach; Morgan Rabach; J. Michael Shipley; Steven D. Shapiro; Robert M. Senior; Jack A. Elias

IL-13 potently stimulates eosinophilic and lymphocytic inflammation and alveolar remodeling in the lung, effects that depend on the induction of various matrix metalloproteinases (MMPs). Here, we compared the remodeling and inflammatory effects of an IL-13 transgene in lungs of wild-type, MMP-9-deficient, or MMP-12-deficient mice. IL-13-induced alveolar enlargement, lung enlargement, compliance alterations, and respiratory failure and death were markedly decreased in the absence of MMP-9 or MMP-12. Moreover, IL-13 potently induced MMPs-2, -12, -13, and -14 in the absence of MMP-9, while induction of MMPs-2, -9, -13, and -14 by IL-13 was diminished in the absence of MMP-12. A deficiency in MMP-9 did not alter eosinophil, macrophage, or lymphocyte recovery, but increased the recovery of total leukocytes and neutrophils in bronchoalveolar lavage (BAL) fluids from IL-13 transgenic mice. In contrast, a deficiency in MMP-12 decreased the recovery of leukocytes, eosinophils, and macrophages, but not lymphocytes or neutrophils. These studies demonstrate that IL-13 acts via MMPs-9 and -12 to induce alveolar remodeling, respiratory failure, and death and that IL-13 induction of MMPs-2, -9, -13, and -14 is mediated at least partially by an MMP-12-dependent pathway. The also demonstrate that MMPs-9 and -12 play different roles in the generation of IL-13-induced inflammation, with MMP-9 inhibiting neutrophil accumulation and MMP-12 contributing to the accumulation of eosinophils and macrophages.


Journal of Experimental Medicine | 2009

Role of breast regression protein 39 (BRP-39)/chitinase 3-like-1 in Th2 and IL-13–induced tissue responses and apoptosis

Chun Geun Lee; Dominik Hartl; Gap Ryol Lee; Barbara Koller; Hiroshi Matsuura; Carla A. Da Silva; Myung Hyun Sohn; Lauren Cohn; Robert J. Homer; Alexander Kozhich; Alison A. Humbles; Jennifer Kearley; Anthony J. Coyle; Geoffrey L. Chupp; Jennifer L. Reed; Richard A. Flavell; Jack A. Elias

Mouse breast regression protein 39 (BRP-39; Chi3l1) and its human homologue YKL-40 are chitinase-like proteins that lack chitinase activity. Although YKL-40 is expressed in exaggerated quantities and correlates with disease activity in asthma and many other disorders, the biological properties of BRP-39/YKL-40 have only been rudimentarily defined. We describe the generation and characterization of BRP-39−/− mice, YKL-40 transgenic mice, and mice that lack BRP-39 and produce YKL-40 only in their pulmonary epithelium. Studies of these mice demonstrated that BRP-39−/− animals have markedly diminished antigen-induced Th2 responses and that epithelial YKL-40 rescues the Th2 responses in these animals. The ability of interleukin13 to induce tissue inflammation and fibrosis was also markedly diminished in the absence of BRP-39. Mechanistic investigations demonstrated that BRP-39 and YKL-40 play an essential role in antigen sensitization and immunoglobulin E induction, stimulate dendritic cell accumulation and activation, and induce alternative macrophage activation. These proteins also inhibit inflammatory cell apoptosis/cell death while inhibiting Fas expression, activating protein kinase B/AKT, and inducing Faim 3. These studies establish novel regulatory roles for BRP-39/YKL-40 in the initiation and effector phases of Th2 inflammation and remodeling and suggest that these proteins are therapeutic targets in Th2- and macrophage-mediated disorders.

Collaboration


Dive into the Jack A. Elias's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhou Zhu

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tao Zheng

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yang Zhou

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge