Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jack Aidley is active.

Publication


Featured researches published by Jack Aidley.


Infection and Immunity | 2014

Phase Variation Mediates Reductions in Expression of Surface Proteins during Persistent Meningococcal Carriage

Mohamed Alamro; Fadil A. Bidmos; Hannah Chan; Neil J. Oldfield; Emma Newton; Xilian Bai; Jack Aidley; Rory Care; Claire Mattick; David P. J. Turner; Keith R. Neal; Dlawer A. A. Ala'Aldeen; Ian M. Feavers; Ray Borrow; Christopher D. Bayliss

ABSTRACT Asymptomatic and persistent colonization of the upper respiratory tract by Neisseria meningitidis occurs despite elicitation of adaptive immune responses against surface antigens. A putative mechanism for facilitating host persistence of this bacterial commensal and pathogen is alterations in expression of surface antigens by simple sequence repeat (SSR)-mediated phase variation. We investigated how often phase variation occurs during persistent carriage by analyzing the SSRs of eight loci in multiple isolates from 21 carriers representative of 1 to 6 months carriage. Alterations in repeat number were detected by a GeneScan analysis and occurred at 0.06 mutations/gene/month of carriage. The expression states were determined by Western blotting and two genes, fetA and nadA, exhibited trends toward low expression states. A critical finding from our unique examination of combinatorial expression states, “phasotypes,” was for significant reductions in expression of multiple phase-variable surface proteins during persistent carriage of some strains. The immune responses in these carriers were examined by measuring variant-specific PorA IgG antibodies, capsular group Y IgG antibodies and serum bactericidal activity in concomitant serum samples. Persistent carriage was associated with high levels of specific IgG antibodies and serum bactericidal activity while recent strain acquisition correlated with a significant induction of antibodies. We conclude that phase-variable genes are driven into lower expression states during long-term persistent meningococcal carriage, in part due to continuous exposure to antibody-mediated selection, suggesting localized hypermutation has evolved to facilitate host persistence.


Nucleic Acids Research | 2016

Phase variation of a Type IIG restriction-modification enzyme alters site-specific methylation patterns and gene expression in Campylobacter jejuni strain NCTC11168.

Awais Anjum; Kelly J. Brathwaite; Jack Aidley; Phillippa L. Connerton; Nicola J. Cummings; Julian Parkhill; Ian F. Connerton; Christopher D. Bayliss

Abstract Phase-variable restriction-modification systems are a feature of a diverse range of bacterial species. Stochastic, reversible switches in expression of the methyltransferase produces variation in methylation of specific sequences. Phase-variable methylation by both Type I and Type III methyltransferases is associated with altered gene expression and phenotypic variation. One phase-variable gene of Campylobacter jejuni encodes a homologue of an unusual Type IIG restriction-modification system in which the endonuclease and methyltransferase are encoded by a single gene. Using both inhibition of restriction and PacBio-derived methylome analyses of mutants and phase-variants, the cj0031c allele in C. jejuni strain NCTC11168 was demonstrated to specifically methylate adenine in 5΄CCCGA and 5΄CCTGA sequences. Alterations in the levels of specific transcripts were detected using RNA-Seq in phase-variants and mutants of cj0031c but these changes did not correlate with observed differences in phenotypic behaviour. Alterations in restriction of phage growth were also associated with phase variation (PV) of cj0031c and correlated with presence of sites in the genomes of these phages. We conclude that PV of a Type IIG restriction-modification system causes changes in site-specific methylation patterns and gene expression patterns that may indirectly change adaptive traits.


Microbiology | 2017

Phage exposure causes dynamic shifts in the expression states of specific phase-variable genes of Campylobacter jejuni

Jack Aidley; Martine C. Holst Sørensen; Christopher D. Bayliss; Lone Brøndsted

Phase variation (PV) creates phenotypic heterogeneity at high frequencies and in a reversible manner. This phenomenon allows bacteria to adapt to a variety of different environments and selective pressures. In Campylobacterjejuni this reversible adaptive process is mediated by mutations in homopolymeric G/C tracts. Many C. jejuni-specific phages are dependent on phase-variable surface structures for successful infection. We previously identified the capsular polysaccharide (CPS) moiety, MeOPN-GalfNAc, as a receptor for phage F336 and showed that phase-variable expression of the transferase for this CPS modification, cj1421, and two other phase-variable CPS genes generated phage resistance in C. jejuni. Here we investigate the population dynamics of C. jejuni NCTC11168 when exposed to phage F336 in vitro using a newly described method - the 28-locus-CJ11168 PV analysis. Dynamic switching was observed in the ON/OFF states of three phase-variable CPS genes, cj1421, cj1422 and cj1426, during phage F336 exposure, with the dominant phage-resistant phasotype differing between cultures. Although loss of the phage receptor was predominately observed, several other PV events also led to phage resistance, a phenomenon that increases the chance of phage-resistant subpopulations being present in any growing culture. No other PV genes were affected and exposure to phage F336 resulted in a highly specific response, only selecting for phase variants of cj1421, cj1422 and cj1426. In summary, C. jejuni may benefit from modification of the surface in multiple ways to inhibit or reduce phage binding, thereby ensuring the survival of the population when exposed to phages.


PLOS ONE | 2016

High Throughput Method for Analysis of Repeat Number for 28 Phase Variable Loci of Campylobacter jejuni Strain NCTC11168

Lea Lango-Scholey; Jack Aidley; Alexandra Woodacre; Michael Jones; Christopher Bayliss

Mutations in simple sequence repeat tracts are a major mechanism of phase variation in several bacterial species including Campylobacter jejuni. Changes in repeat number of tracts located within the reading frame can produce a high frequency of reversible switches in gene expression between ON and OFF states. The genome of C. jejuni strain NCTC11168 contains 29 loci with polyG/polyC tracts of seven or more repeats. This protocol outlines a method—the 28-locus-CJ11168 PV-analysis assay—for rapidly determining ON/OFF states of 28 of these phase-variable loci in a large number of individual colonies from C. jejuni strain NCTC11168. The method combines a series of multiplex PCR assays with a fragment analysis assay and automated extraction of fragment length, repeat number and expression state. This high throughput, multiplex assay has utility for detecting shifts in phase variation states within and between populations over time and for exploring the effects of phase variation on adaptation to differing selective pressures. Application of this method to analysis of the 28 polyG/polyC tracts in 90 C. jejuni colonies detected a 2.5-fold increase in slippage products as tracts lengthened from G8 to G11 but no difference between tracts of similar length indicating that flanking sequence does not influence slippage rates. Comparison of this observed slippage to previously measured mutation rates for G8 and G11 tracts in C. jejuni indicates that PCR amplification of a DNA sample will over-estimate phase variation frequencies by 20-35-fold. An important output of the 28-locus-CJ11168 PV-analysis assay is combinatorial expression states that cannot be determined by other methods. This method can be adapted to analysis of phase variation in other C. jejuni strains and in a diverse range of bacterial species.


Plant Physiology | 2017

A Conserved cis-Regulatory Module Determines Germline Fate through Activation of the Transcription Factor DUO1 Promoter

Benjamin Peters; Jonathan Casey; Jack Aidley; Stuart Zohrab; Michael Borg; David Twell; Lynette Brownfield

A cis-regulatory module conserved in eudicots directs spatial and temporal control of the transcription factor DUO1 to specify male germline fate. The development of the male germline within pollen relies upon the activation of numerous target genes by the transcription factor DUO POLLEN1 (DUO1). The expression of DUO1 is restricted to the male germline and is first detected shortly after the asymmetric division that segregates the germ cell lineage. Transcriptional regulation is critical in controlling DUO1 expression, since transcriptional and translational fusions show similar expression patterns. Here, we identify key promoter sequences required for the germline-specific regulation of DUO1 transcription. Combining promoter deletion analyses with phylogenetic footprinting in eudicots and in Arabidopsis accessions, we identify a cis-regulatory module, Regulatory region of DUO1 (ROD1), which replicates the expression pattern of DUO1 in Arabidopsis (Arabidopsis thaliana). We show that ROD1 from the legume Medicago truncatula directs male germline-specific expression in Arabidopsis, demonstrating conservation of DUO1 regulation among eudicots. ROD1 contains several short conserved cis-regulatory elements, including three copies of the motif DNGTGGV, required for germline expression and tandem repeats of the motif YAACYGY, which enhance DUO1 transcription in a positive feedback loop. We conclude that a cis-regulatory module conserved in eudicots directs the spatial and temporal expression of the transcription factor DUO1 to specify male germline fate and sperm cell differentiation.


Mbio | 2017

Nonselective Bottlenecks Control the Divergence and Diversification of Phase-Variable Bacterial Populations

Jack Aidley; Shweta Rajopadhye; Nwanekka M. Akinyemi; Lea Lango-Scholey; Christopher D. Bayliss

ABSTRACT Phase variation occurs in many pathogenic and commensal bacteria and is a major generator of genetic variability. A putative advantage of phase variation is to counter reductions in variability imposed by nonselective bottlenecks during transmission. Genomes of Campylobacter jejuni, a widespread food-borne pathogen, contain multiple phase-variable loci whose rapid, stochastic variation is generated by hypermutable simple sequence repeat tracts. These loci can occupy a vast number of combinatorial expression states (phasotypes) enabling populations to rapidly access phenotypic diversity. The imposition of nonselective bottlenecks can perturb the relative frequencies of phasotypes, changing both within-population diversity and divergence from the initial population. Using both in vitro testing of C. jejuni populations and a simple stochastic simulation of phasotype change, we observed that single-cell bottlenecks produce output populations of low diversity but with bimodal patterns of either high or low divergence. Conversely, large bottlenecks allow divergence only by accumulation of diversity, while interpolation between these extremes is observed in intermediary bottlenecks. These patterns are sensitive to the genetic diversity of initial populations but stable over a range of mutation rates and number of loci. The qualitative similarities of experimental and in silico modeling indicate that the observed patterns are robust and applicable to other systems where localized hypermutation is a defining feature. We conclude that while phase variation will maintain bacterial population diversity in the face of intermediate bottlenecks, narrow transmission-associated bottlenecks could produce host-to-host variation in bacterial phenotypes and hence stochastic variation in colonization and disease outcomes. IMPORTANCE Transmission and within-host spread of pathogenic organisms are associated with selective and nonselective bottlenecks that significantly reduced population diversity. In several bacterial pathogens, hypermutable mechanisms have evolved that mediate high-frequency reversible switching of specific phenotypes, such as surface structures, and hence counteract bottleneck-associated reductions in population diversity. Here, we investigated how combinations of hypermutable simple sequence repeats interact with nonselective bottlenecks by using a stochastic computer model and experimental data for Campylobacter jejuni, a food-borne pathogen. We find that bottleneck size qualitatively alters the output populations, with large bottlenecks maintaining population diversity while small bottlenecks produce dramatic shifts in the prevalence of particular variants. We conclude that narrow bottlenecks are capable of producing host-to-host variation in repeat-controlled bacterial phenotypes, leading to a potential for stochastic person-to-person variations in disease outcome for C. jejuni and other organisms with similar hypermutable mechanisms. IMPORTANCE Transmission and within-host spread of pathogenic organisms are associated with selective and nonselective bottlenecks that significantly reduced population diversity. In several bacterial pathogens, hypermutable mechanisms have evolved that mediate high-frequency reversible switching of specific phenotypes, such as surface structures, and hence counteract bottleneck-associated reductions in population diversity. Here, we investigated how combinations of hypermutable simple sequence repeats interact with nonselective bottlenecks by using a stochastic computer model and experimental data for Campylobacter jejuni, a food-borne pathogen. We find that bottleneck size qualitatively alters the output populations, with large bottlenecks maintaining population diversity while small bottlenecks produce dramatic shifts in the prevalence of particular variants. We conclude that narrow bottlenecks are capable of producing host-to-host variation in repeat-controlled bacterial phenotypes, leading to a potential for stochastic person-to-person variations in disease outcome for C. jejuni and other organisms with similar hypermutable mechanisms.


PLOS ONE | 2018

Phasome analysis of pathogenic and commensal Neisseria species expands the known repertoire of phase variable genes, and highlights common adaptive strategies

Joseph J. Wanford; Luke R. Green; Jack Aidley; Christopher D. Bayliss

Pathogenic Neisseria are responsible for significantly higher levels of morbidity and mortality than their commensal relatives despite having similar genetic contents. Neisseria possess a disparate arsenal of surface determinants that facilitate host colonisation and evasion of the immune response during persistent carriage. Adaptation to rapid changes in these hostile host environments is enabled by phase variation (PV) involving high frequency, stochastic switches in expression of surface determinants. In this study, we analysed 89 complete and 79 partial genomes, from the NCBI and Neisseria PubMLST databases, representative of multiple pathogenic and commensal species of Neisseria using PhasomeIt, a new program that identifies putatively phase-variable genes and homology groups by the presence of simple sequence repeats (SSR). We detected a repertoire of 884 putative PV loci with maxima of 54 and 47 per genome in gonococcal and meningococcal isolates, respectively. Most commensal species encoded a lower number of PV genes (between 5 and 30) except N. lactamica wherein the potential for PV (36–82 loci) was higher, implying that PV is an adaptive mechanism for persistence in this species. We also characterised the repeat types and numbers in both pathogenic and commensal species. Conservation of SSR-mediated PV was frequently observed in outer membrane proteins or modifiers of outer membrane determinants. Intermittent and weak selection for evolution of SSR-mediated PV was suggested by poor conservation of tracts with novel PV genes often occurring in only one isolate. Finally, we describe core phasomes—the conserved repertoires of phase-variable genes—for each species that identify overlapping but distinctive adaptive strategies for the pathogenic and commensal members of the Neisseria genus.


Mbio | 2017

Erratum for Aidley et al., "Nonselective Bottlenecks Control the Divergence and Diversification of Phase-Variable Bacterial Populations".

Jack Aidley; Shweta Rajopadhye; Nwanekka M. Akinyemi; Lea Lango-Scholey; Michael Jones; Christopher Bayliss

Volume 8, no. 2, e02311-16, 2017, https://doi.org/10.1128/mBio.02311-16. The byline and affiliation line of our article should appear as shown above. The following should also be added to the end of Acknowledgments: “M.A.J. was supported by the BBSRC (grant BBI02542).” Published 8 August 2017 Citation Aidley J, Rajopadhye S, Akinyemi NM, Lango-Scholey L, Jones MA, Bayliss CD. 2017. Erratum for Aidley et al., “Nonselective bottlenecks control the divergence and diversification of phase-variable bacterial populations.” mBio 8:e00878-17. https://doi .org/10.1128/mBio.00878-17. Copyright


Journal of Biological Education | 2018

Simulating phase variation: a practical approach to teaching mutation and diversity*

Joe Wanford; Jack Aidley; Christopher D. Bayliss; Julian M. Ketley; Mark Goodwin

Abstract Mutation, diversity, natural selection and the biology of human pathogens (including antibiotic resistance) are key features of the biosciences curriculum at A Level and undergraduate study. Few resources exist to allow students to engage with these topics in an interactive manner. This paper describes an interactive, online simulation of mutation and of phase variation, a mechanism employed by many bacteria to generate genetic diversity, and includes an example of how the simulation can allow students to draw links between the genetics of pathogens and disease. Students experiment with different parameters of the simulation and use this–along with peer debate–to answer a set of questions. Use of the simulation goes some way to expel the fallacy that mutations are generated in response to environmental change. This freely available resource can be easily adapted to a wide range of audiences and topics where mutation is the underlying principle (cancer genetics for example).


#N#Microbial Genomics | 2018

PhasomeIt: an ‘omics’ approach to cataloguing the potential breadth of phase variation in the genus Campylobacter

Jack Aidley; Joesph J. Wanford; Luke R. Green; Samuel K. Sheppard; Christopher D. Bayliss

Hypermutable simple sequence repeats (SSRs) are drivers of phase variation (PV) whose stochastic, high-frequency, reversible switches in gene expression are a common feature of several pathogenic bacterial species, including the human pathogen Campylobacter jejuni. Here we examine the distribution and conservation of known and putative SSR-driven phase variable genes – the phasome – in the genus Campylobacter. PhasomeIt, a new program, was specifically designed for rapid identification of SSR-mediated PV. This program detects the location, type and repeat number of every SSR. Each SSR is linked to a specific gene and its putative expression state. Other outputs include conservation of SSR-driven phase-variable genes and the ‘core phasome’ – the minimal set of PV genes in a phylogenetic grouping. Analysis of 77 complete Campylobacter genome sequences detected a ‘core phasome’ of conserved PV genes in each species and a large number of rare PV genes with few, or no, homologues in other genome sequences. Analysis of a set of partial genome sequences, with food-chain-associated metadata, detected evidence of a weak link between phasome and source host for disease-causing isolates of sequence type (ST)-828 but not the ST-21 or ST-45 complexes. Investigation of the phasomes in the genus Campylobacter provided evidence of overlapping but distinctive mechanisms of PV-mediated adaptation to specific niches. This suggests that the phasome could be involved in host adaptation and spread of campylobacters. Finally, this tool is malleable and will have utility for studying the distribution and genic effects of other repetitive elements in diverse bacterial species.

Collaboration


Dive into the Jack Aidley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Twell

University of Leicester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Jones

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Awais Anjum

University of Leicester

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge