Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jack G. Shi is active.

Publication


Featured researches published by Jack G. Shi.


Journal of Immunology | 2010

Selective Inhibition of JAK1 and JAK2 Is Efficacious in Rodent Models of Arthritis: Preclinical Characterization of INCB028050

Jordan S. Fridman; Peggy Scherle; Robert Collins; Timothy Burn; Yanlong Li; Jun Li; Maryanne Covington; Beth Thomas; Paul Collier; Margaret Favata; Xiaoming Wen; Jack G. Shi; Ryan F. McGee; Patrick J. Haley; Stacey Shepard; James D. Rodgers; Swamy Yeleswaram; Greg Hollis; Robert Newton; Brian Metcalf; Steven M. Friedman; Kris Vaddi

Inhibiting signal transduction induced by inflammatory cytokines offers a new approach for the treatment of autoimmune diseases such as rheumatoid arthritis. Kinase inhibitors have shown promising oral disease-modifying antirheumatic drug potential with efficacy similar to anti-TNF biologics. Direct and indirect inhibition of the JAKs, with small molecule inhibitors like CP-690,550 and INCB018424 or neutralizing Abs, such as the anti-IL6 receptor Ab tocilizumab, have demonstrated rapid and sustained improvement in clinical measures of disease, consistent with their respective preclinical experiments. Therefore, it is of interest to identify optimized JAK inhibitors with unique profiles to maximize therapeutic opportunities. INCB028050 is a selective orally bioavailable JAK1/JAK2 inhibitor with nanomolar potency against JAK1 (5.9 nM) and JAK2 (5.7 nM). INCB028050 inhibits intracellular signaling of multiple proinflammatory cytokines including IL-6 and IL-23 at concentrations <50 nM. Significant efficacy, as assessed by improvements in clinical, histologic and radiographic signs of disease, was achieved in the rat adjuvant arthritis model with doses of INCB028050 providing partial and/or periodic inhibition of JAK1/JAK2 and no inhibition of JAK3. Diminution of inflammatory Th1 and Th17 associated cytokine mRNA levels was observed in the draining lymph nodes of treated rats. INCB028050 was also effective in multiple murine models of arthritis, with no evidence of suppression of humoral immunity or adverse hematologic effects. These data suggest that fractional inhibition of JAK1 and JAK2 is sufficient for significant activity in autoimmune disease models. Clinical evaluation of INCB028050 in RA is ongoing.


Journal of The American Academy of Dermatology | 2012

Preliminary clinical activity of a topical JAK1/2 inhibitor in the treatment of psoriasis.

Naresh Punwani; Peggy Scherle; Robert Flores; Jack G. Shi; Jinjin Liang; Swamy Yeleswaram; Richard S. Levy; William V. Williams; Alice B. Gottlieb

BACKGROUND Janus-associated kinases (JAKs) are involved in signal transduction from a variety of cytokines implicated in the pathogenesis of psoriasis, including interleukin (IL)-12, IL-23, and interferon-γ. INCB018424, a small molecule inhibitor of JAK1 and JAK2, inhibits cytokine-induced JAK/signal transducers and activators of transcription signaling and the resultant production of inflammatory proteins (eg, IL-17). OBJECTIVE We sought to demonstrate proof of concept in patients with stable plaque psoriasis. METHODS Patients were dosed with vehicle, 0.5% or 1.0% INCB018424 phosphate cream once a day or 1.5% twice a day for 28 days. Additional groups included two active comparators (calcipotriene 0.005% cream or betamethasone dipropionate 0.05% cream). RESULTS Both the 1% and the 1.5% cream improved lesion thickness, erythema, and scaling and reduced lesion area compared with placebo. A composite lesion score decreased by greater than 50% with the efficacious doses of INCB018424 compared with 32% for vehicle controls. Topical application of INCB018424 was well tolerated with few mild adverse events noted. Mean plasma concentrations of INCB018424 after topical application of 0.5% to 1.5% cream were in the low nanomolar range, representing a fraction (<1%) of the half maximal inhibitory concentration (IC(50)) in whole blood for inhibition of cytokine-stimulated signal transducers and activators of transcription-3 phosphorylation. LIMITATIONS This study was limited by the relatively short study duration and small sample size. CONCLUSION Topical INCB018424 is safe, is well tolerated, and exhibits clinical activity in the topical treatment of psoriasis.


Journal of Investigative Dermatology | 2011

Preclinical Evaluation of Local JAK1 and JAK2 Inhibition in Cutaneous Inflammation

Jordan S. Fridman; Peggy Scherle; Robert Collins; Timothy Burn; Claire L. Neilan; Denise Hertel; Nancy Contel; Patrick J. Haley; Beth Thomas; Jack G. Shi; Paul Collier; James D. Rodgers; Stacey Shepard; Brian Metcalf; Gregory Hollis; Robert Newton; Swamy Yeleswaram; Steven M. Friedman; Kris Vaddi

JAKs are required for signaling initiated by several cytokines (e.g., IL-4, IL-12, IL-23, thymic stromal lymphopoietin (TSLP), and IFNγ) implicated in the pathogenesis of inflammatory skin diseases such as psoriasis and atopic dermatitis (AD). Direct antagonism of cytokines, such as IL-12 and IL-23 using ustekinumab, has proven effective in randomized studies in psoriasis patients. We hypothesized that local inhibition of cytokine signaling using topical administration of INCB018424, a small molecule inhibitor of JAK1 and JAK2, would provide benefit similar to systemic cytokine neutralization. In cellular assays, INCB018424 inhibits cytokine-induced JAK/signal transducers and activators of transcription (STAT) signaling and the resultant production of inflammatory proteins (e.g., IL-17, monocyte chemotactic protein-1, and IL-22) in lymphocytes and monocytes, with half-maximal inhibitory concentration values <100  nM. In vivo, topical application of INCB018424 resulted in suppression of STAT3 phosphorylation, edema, lymphocyte infiltration, and keratinocyte proliferation in a murine contact hypersensitivity model and inhibited tissue inflammation induced by either intradermal IL-23 or TSLP. Topical INCB018424 was also well tolerated in a 28-day safety study in Gottingen minipigs. These results suggest that localized JAK1/JAK2 inhibition may be therapeutic in a range of inflammatory skin disorders such as psoriasis and AD. Clinical evaluation of topical INCB018424 is ongoing.


The Journal of Clinical Pharmacology | 2011

The Pharmacokinetics, Pharmacodynamics, and Safety of Orally Dosed INCB018424 Phosphate in Healthy Volunteers

Jack G. Shi; Xuejun Chen; Ryan F. McGee; Robert R. Landman; Thomas Emm; Yvonne Lo; Peggy Scherle; Naresh Punwani; William V. Williams; Swamy Yeleswaram

INCB018424 phosphate, a potent inhibitor of JAK enzymes with selectivity for JAK1&2, is in development for the treatment of myelofibrosis (MF). The oral dose pharmacokinetics, pharmacodynamics, safety, and tolerability of INCB018424 were evaluated in healthy volunteers in 2 double‐blind, randomized, and placebo‐controlled studies. The first study evaluated single ascending doses of 5 to 200 mg INCB018424 and the effect of food, whereas the second study evaluated multiple ascending doses, including both once‐ and twice‐daily dosing for 10 days. As a Biopharmaceutical Classification System class I drug, INCB018424 exhibited good oral bioavailability and dose‐proportional systemic exposures. INCB018424 showed low oral dose clearance and a small volume of distribution, with an approximate 3‐hour plasma half‐life and insignificant accumulation following repeat dosing. A high‐fat meal reduced INCB018424 Cmax by 24% but had little effect on INCB018424 AUC. INCB018424 was cleared primarily by metabolism with negligible renal excretion. The pharmacodynamics of INCB018424, evaluated by the inhibition of phosphorylated STAT3 following cytokine stimulation in whole blood, showed good correlation with INCB018424 plasma concentrations. INCB018424 was generally safe and well tolerated, with 25 mg bid and 100 mg qd established as the maximum tolerated doses in healthy volunteers.


The Journal of Clinical Pharmacology | 2012

The Effect of CYP3A4 Inhibition or Induction on the Pharmacokinetics and Pharmacodynamics of Orally Administered Ruxolitinib (INCB018424 Phosphate) in Healthy Volunteers

Jack G. Shi; Xuejun Chen; Thomas Emm; Peggy Scherle; Ryan F. McGee; Yvonne Lo; Robert R. Landman; Edward McKeever; Naresh Punwani; William V. Williams; Swamy Yeleswaram

Ruxolitinib, a selective Janus kinase (JAK) 1&2 inhibitor in development for the treatment of myeloproliferative neoplasms, is primarily metabolized by CYP3A4. The effects of inhibition or induction of CYP3A4 on single oral dose ruxolitinib pharmacokinetics (PK) and pharmacodynamics (PD) were evaluated in healthy volunteers. Coadministration of ketoconazole (a potent CYP3A4 inhibitor) and erythromycin (a moderate CYP3A4 inhibitor) increased total ruxolitinib plasma exposure (AUC0‐∞) by 91% and 27%, respectively, and ruxolitinib PD, as measured by the inhibition of interleukin (IL)–6‐stimulated STAT3 phosphorylation in whole blood, was generally consistent with the PK observed. Pretreatment with rifampin, a potent CYP3A4 inducer, decreased ruxolitinib AUC0‐∞ by 71% while resulting in only a 10% decrease in the overall PD activity. This apparent PK/PD discrepancy may be explained, in part, by an increase in the relative abundance of ruxolitinib active metabolites with the rifampin coadministration. The collective PK/PD data suggest that starting doses of ruxolitinib should be reduced by 50% if coadministered with a potent CYP3A4 inhibitor, whereas adjustments in ruxolitinib starting doses may not be needed when coadministered with inducers or mild/moderate inhibitors of CYP3A4. All study doses of ruxolitinib were generally safe and well tolerated when given alone and in combination with ketoconazole, erythromycin, or rifampin.


The Journal of Clinical Pharmacology | 2014

The pharmacokinetics, pharmacodynamics, and safety of baricitinib, an oral JAK 1/2 inhibitor, in healthy volunteers.

Jack G. Shi; Xuejun Chen; Fiona Lee; Thomas Emm; Peggy Scherle; Yvonne Lo; Naresh Punwani; William V. Williams; Swamy Yeleswaram

Baricitinib (also known as LY3009104 or INCB028050), a novel and potent small molecule inhibitor of Janus kinase family of enzymes (JAKs) with selectivity for JAK1 and JAK2, is currently in clinical development for the treatment of rheumatoid arthritis (RA) and other inflammatory disorders. Two double‐blind, randomized, and placebo‐controlled studies were conducted to evaluate single ascending doses of 1–20 mg and multiple ascending doses of 2–20 mg QD and 5 mg BID for 10 or 28 days in healthy volunteers. Following oral administration, baricitinib plasma concentration typically attains its peak value within 1.5 hours postdose and subsequently declines in a bi‐exponential fashion. Baricitinib demonstrates dose‐linear and time‐invariant pharmacokinetics, with low oral‐dose clearance (17 L/h) and minimal systemic accumulation observed following repeat dosing. The mean renal clearance of baricitinib was determined to be ∼12 L/h. [Correction added after publication 12 November 2014: in the preceding sentence, “2 L/h” was changed to “12 L/h.”] The effect of a high‐fat meal on baricitinib pharmacokinetics was insignificant. The pharmacodynamics of baricitinib, evaluated by the inhibition of STAT3 phosphorylation following cytokine stimulation in the whole blood ex vivo, was well correlated with baricitinib plasma concentrations. Baricitinib was generally safe and well tolerated, with no serious treatment‐related adverse events (AEs) reported from either of the studies. An expected rapidly reversible, dose‐related decline in absolute neutrophil count was seen with baricitinib.


Clinical Cancer Research | 2017

First-in-Human Phase I Study of the Oral Inhibitor of Indoleamine 2,3-Dioxygenase-1 Epacadostat (INCB024360) in Patients with Advanced Solid Malignancies

Gregory L. Beatty; Peter J. O'Dwyer; Jason Clark; Jack G. Shi; Kevin Bowman; Peggy Scherle; Robert Newton; Richard Schaub; Janet Maleski; Lance Leopold; Thomas F. Gajewski

Purpose: Indoleamine 2,3-dioxygenase-1 (IDO1) catalyzes the degradation of tryptophan to N-formyl-kynurenine. Overexpressed in many solid malignancies, IDO1 can promote tumor escape from host immunosurveillance. This first-in-human phase I study investigated the maximum tolerated dose, safety, pharmacokinetics, pharmacodynamics, and antitumor activity of epacadostat (INCB024360), a potent and selective inhibitor of IDO1. Experimental Design: Fifty-two patients with advanced solid malignancies were treated with epacadostat [50 mg once daily or 50, 100, 300, 400, 500, 600, or 700 mg twice daily (BID)] in a dose-escalation 3 + 3 design and evaluated in 28-day cycles. Treatment was continued until disease progression or unacceptable toxicity. Results: One dose-limiting toxicity (DLT) occurred at the dose of 300 mg BID (grade 3, radiation pneumonitis); another DLT occurred at 400 mg BID (grade 3, fatigue). The most common adverse events in >20% of patients overall were fatigue, nausea, decreased appetite, vomiting, constipation, abdominal pain, diarrhea, dyspnea, back pain, and cough. Treatment produced significant dose-dependent reductions in plasma kynurenine levels and in the plasma kynurenine/tryptophan ratio at all doses and in all patients. Near maximal changes were observed at doses of ≥100 mg BID with >80% to 90% inhibition of IDO1 achieved throughout the dosing period. Although no objective responses were detected, stable disease lasting ≥16 weeks was observed in 7 of 52 patients. Conclusions: Epacadostat was generally well tolerated, effectively normalized kynurenine levels, and produced maximal inhibition of IDO1 activity at doses of ≥100 mg BID. Studies investigating epacadostat in combination with other immunomodulatory drugs are ongoing. Clin Cancer Res; 23(13); 3269–76. ©2017 AACR.


British Journal of Dermatology | 2015

Downmodulation of key inflammatory cell markers with a topical Janus kinase 1/2 inhibitor.

Naresh Punwani; Timothy Burn; Peggy Scherle; Robert Flores; Jack G. Shi; Paul Collier; Denise Hertel; Patrick J. Haley; Yvonne Lo; Paul Waeltz; James D. Rodgers; Stacey Shepard; Kris Vaddi; Swamy Yeleswaram; Richard S. Levy; William V. Williams; Alice B. Gottlieb

INCB018424 is a novel, potent Janus kinase (JAK)1/JAK2 inhibitor that blocks signal transduction of multiple proinflammatory cytokines.


Nature Reviews Drug Discovery | 2011

The relevance of assessment of intestinal P-gp inhibition using digoxin as an in vivo probe substrate

Jack G. Shi; Yan Zhang; Swamy Yeleswaram

The relevance of assessment of intestinal P-gp inhibition using digoxin as an in vivo probe substrate


Drug Metabolism and Disposition | 2016

Roles of UGT, P450, and Gut Microbiota in the Metabolism of Epacadostat in Humans

Jason Boer; Ruth Young-Sciame; Fiona Lee; Kevin Bowman; Xiaoqing Yang; Jack G. Shi; Frank M. Nedza; William Frietze; Laurine Galya; Andrew P. Combs; Swamy Yeleswaram; Sharon Diamond

Epacadostat (EPA, INCB024360) is a first-in-class, orally active, investigational drug targeting the enzyme indoleamine 2,3-dioxygenase 1 (IDO1). In Phase I studies, EPA has demonstrated promising clinical activity when used in combination with checkpoint modulators. When the metabolism of EPA was investigated in humans, three major, IDO1-inactive, circulating plasma metabolites were detected and characterized: M9, a direct O-glucuronide of EPA; M11, an amidine; and M12, N-dealkylated M11. Glucuronidation of EPA to form M9 is the dominant metabolic pathway, and in vitro, this metabolite is formed by UGT1A9. However, negligible quantities of M11 and M12 were detected when EPA was incubated with a panel of human microsomes from multiple tissues, hepatocytes, recombinant human cytochrome P450s (P450s), and non-P450 enzymatic systems. Given the reductive nature of M11 formation and the inability to define its source, the role of gut microbiota was investigated. Analysis of plasma from mice dosed with EPA following pretreatment with either antibiotic (ciprofloxacin) to inhibit gut bacteria or 1-aminobenzotriazole (ABT) to systemically inhibit P450s demonstrated that gut microbiota is responsible for the formation of M11. Incubations of EPA in human feces confirmed the role of gut bacteria in the formation of M11. Further, incubations of M11 with recombinant P450s showed that M12 is formed via N-dealkylation of M11 by CYP3A4, CYP2C19, and CYP1A2. Thus, in humans three major plasma metabolites of EPA were characterized: two primary metabolites, M9 and M11, formed directly from EPA via UGT1A9 and gut microbiota, respectively, and M12 formed as a secondary metabolite via P450s from M11.

Collaboration


Dive into the Jack G. Shi's collaboration.

Researchain Logo
Decentralizing Knowledge