Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jack Gauldie is active.

Publication


Featured researches published by Jack Gauldie.


Immunology Today | 1994

The acute phase response.

Heinz Baumann; Jack Gauldie

Adult mammals respond to tissue damage by implementing the acute phase response, which comprises a series of specific physiological reactions. This review outlines the principal cellular and molecular mechanisms that control initiation of the tissue response at the site of injury, the recruitment of the systemic defense mechanisms, the acute phase response of the liver and the resolution of the acute phase response.


Journal of Clinical Investigation | 1998

IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses.

Zhou Xing; Jack Gauldie; Gerard Cox; Heinz Baumann; Manel Jordana; Xue-Feng Lei; Michelle K. Achong

IL-6 is induced often together with the proinflammatory cytokines TNFalpha and IL-1 in many alarm conditions, and circulating IL-6 plays an important role in the induction of acute phase reactions. However, whether this endogenous IL-6 plays any additional pro- or antiinflammatory roles in local or systemic responses remains unclear. In this study, the role of IL-6 in acute inflammatory responses was investigated in animal models of endotoxic lung or endotoxemia by using IL-6+/+ and IL-6-/- mice. Aerosol exposure of endotoxin induced increased IL-6 and proinflammatory cytokines TNFalpha and MIP-2 and a neutrophilic response in the lung of IL-6+/+ mice. However, the levels of TNFalpha and MIP-2 and neutrophilia were significantly higher in the lung of IL-6-/- mice. The rate of neutrophil apoptosis in these mice was similar to that in IL-6+/+ mice. A low constitutive level of antiinflammatory cytokine IL-10 was not enhanced by endotoxin and remained similar in the lung in both IL-6+/+ and IL-6-/- mice. Systemically, intraperitoneal delivery of endotoxin resulted in much more pronounced circulating levels of TNFalpha, MIP-2, GM-CSF, and IFNgamma in IL-6-/- mice than in IL-6+/+ mice, and administration of recombinant IL-6 to IL-6-/- mice abolished these differences. In contrast, circulating IL-10 levels were induced to a similar degree in both IL-6+/+ and IL-6-/- mice. Thus, our studies reveal that endogenous IL-6 plays a crucial antiinflammatory role in both local and systemic acute inflammatory responses by controlling the level of proinflammatory, but not antiinflammatory, cytokines, and that these antiinflammatory activities by IL-6 cannot be compensated for by IL-10 or other IL-6 family members.


Journal of Clinical Investigation | 2001

Transient expression of IL-1beta induces acute lung injury and chronic repair leading to pulmonary fibrosis.

Martin Kolb; Peter J. Margetts; Daniel C. Anthony; Fernando Pitossi; Jack Gauldie

IL-1beta is one of a family of proinflammatory cytokines thought to be involved in many acute and chronic diseases. Although it is considered to participate in wound repair, no major role has been attributed to IL-1beta in tissue fibrosis. We used adenoviral gene transfer to transiently overexpress IL-1beta in rat lungs after intratracheal administration. The high expression of IL-1beta in the first week after injection was accompanied by local increase of the proinflammatory cytokines IL-6 and TNF-alpha and a vigorous acute inflammatory tissue response with evidence of tissue injury. The profibrotic cytokines PDGF and TGF-beta1 were increased in lung fluid samples 1 week after peak expression of IL-1beta. Although PDGF returned to baseline in the third week, TGF-beta1 showed increased concentrations in bronchoalveolar lavage fluid for up to 60 days. This was associated with severe progressive tissue fibrosis in the lung, as shown by the presence of myofibroblasts, fibroblast foci, and significant extracellular accumulations of collagen and fibronectin. These data directly demonstrate how acute tissue injury in the lung, initiated by a highly proinflammatory cytokine, IL-1beta, converts to progressive fibrotic changes. IL-1beta should be considered a valid target for therapeutic intervention in diseases associated with fibrosis and tissue remodeling.


American Journal of Respiratory and Critical Care Medicine | 2009

Circulating fibrocytes are an indicator of poor prognosis in idiopathic pulmonary fibrosis.

Antje Moeller; Sarah E. Gilpin; Kjetil Ask; Gerard Cox; Deborah J. Cook; Jack Gauldie; Peter J. Margetts; Laszlo Farkas; Julian Dobranowski; Colm Boylan; Paul M. O'Byrne; Robert M. Strieter; Martin Kolb

RATIONALE The clinical management of idiopathic pulmonary fibrosis (IPF) remains a major challenge due to lack of effective drug therapy or accurate indicators for disease progression. Fibrocytes are circulating mesenchymal cell progenitors that are involved in tissue repair and fibrosis. OBJECTIVES To test the hypothesis that assay of these cells may provide a biomarker for activity and progression of IPF. METHODS Fibrocytes were defined as cells positive for CD45 and collagen-1 by flow cytometry and quantified in patients with stable IPF and during acute exacerbation of the disease. We investigated the clinical and prognostic value of fibrocyte counts by comparison with standard clinical parameters and survival. We used healthy age-matched volunteers and patients with acute respiratory distress syndrome as control subjects. MEASUREMENTS AND MAIN RESULTS Fibrocytes were significantly elevated in patients with stable IPF (n = 51), with a further increase during acute disease exacerbation (n = 7; P < 0.001 vs. control subjects). Patients with acute respiratory distress syndrome (n = 10) were not different from healthy control subjects or stable patients with IPF. Fibrocyte numbers were not correlated with lung function or radiologic severity scores, but they were an independent predictor of early mortality. The mean survival of patients with fibrocytes higher than 5% of total blood leukocytes was 7.5 months compared with 27 months for patients with less than 5% (P < 0.0001). CONCLUSIONS Fibrocytes are an indicator for disease activity of IPF and might be useful as a clinical marker for disease progression. This study suggests that quantification of circulating fibrocytes may allow prediction of early mortality in patients with IPF.


Cell | 2000

Mannose 6-Phosphate/Insulin-like Growth Factor II Receptor Is a Death Receptor for Granzyme B during Cytotoxic T Cell–Induced Apoptosis

Bruce Motyka; Gregory S. Korbutt; Michael J. Pinkoski; Jeffrey A. Heibein; Antonio Caputo; Marita Lundstrom Hobman; Michele Barry; Irene Shostak; Tracy Sawchuk; Charles F.B. Holmes; Jack Gauldie; R. Chris Bleackley

The serine proteinase granzyme B is crucial for the rapid induction of target cell apoptosis by cytotoxic T cells. Granzyme B was recently demonstrated to enter cells in a perforin-independent manner, thus predicting the existence of a cell surface receptor(s). We now present evidence that this receptor is the cation-independent mannose 6-phosphate/insulin-like growth factor receptor (CI-MPR). Inhibition of the granzyme B-CI-MPR interaction prevented granzyme B cell surface binding, uptake, and the induction of apoptosis. Significantly, expression of the CI-MPR was essential for cytotoxic T cell-mediated apoptosis of target cells in vitro and for the rejection of allogeneic cells in vivo. These results suggest a novel target for immunotherapy and a potential mechanism used by tumors for immune evasion.


Journal of Immunology | 2004

Smad3 Null Mice Develop Airspace Enlargement and Are Resistant to TGF-β-Mediated Pulmonary Fibrosis

Philippe Bonniaud; Martin Kolb; Tom Galt; Jennifer Robertson; Clinton S. Robbins; Martin R. Stämpfli; Carol Lavery; Peter J. Margetts; Anita B. Roberts; Jack Gauldie

Transforming growth factor-β1 plays a key role in the pathogenesis of pulmonary fibrosis, mediating extracellular matrix (ECM) gene expression through a series of intracellular signaling molecules, including Smad2 and Smad3. We show that Smad3 null mice (knockout (KO)) develop progressive age-related increases in the size of alveolar spaces, associated with high spontaneous presence of matrix metalloproteinases (MMP-9 and MMP-12) in the lung. Moreover, transient overexpression of active TGF-β1 in lungs, using adenoviral vector-mediated gene transfer, resulted in progressive pulmonary fibrosis in wild-type mice, whereas no fibrosis was seen in the lungs of Smad3 KO mice up to 28 days. Significantly higher levels of matrix components (procollagen 3A1, connective tissue growth factor) and antiproteinases (plasminogen activator inhibitor-1, tissue inhibitor of metalloproteinase-1) were detected in wild-type lungs 4 days after TGF-β1 administration, while no such changes were seen in KO lungs. These data suggest a pivotal role of the Smad3 pathway in ECM metabolism. Basal activity of the pathway is required to maintain alveolar integrity and ECM homeostasis, but excessive signaling through the pathway results in fibrosis characterized by inhibited degradation and enhanced ECM deposition. The Smad3 pathway is involved in pathogenic mechanisms mediating tissue destruction (lack of repair) and fibrogenesis (excessive repair).


American Journal of Pathology | 1998

Transfer of Tumor Necrosis Factor-α to Rat Lung Induces Severe Pulmonary Inflammation and Patchy Interstitial Fibrogenesis with Induction of Transforming Growth Factor-β1 and Myofibroblasts

Patricia J. Sime; Robert A. Marr; David Gauldie; Zhou Xing; Bryan R. Hewlett; Frank L. Graham; Jack Gauldie

Tumor necrosis factor-alpha is up-regulated in a variety of different human immune-inflammatory and fibrotic pulmonary pathologies. However, its precise role in these pathologies and, in particular, the mechanism(s) by which it may induce fibrogenesis are not yet elucidated. Using a replication-deficient adenovirus to transfer the cDNA of tumor necrosis factor-alpha to rat lung, we have been able to study the effect of transient but prolonged (7 to 10 days) overexpression of tumor necrosis factor-alpha in normal adult pulmonary tissue. We have demonstrated that local overexpression resulted in severe pulmonary inflammation with significant increases in neutrophils, macrophages, and lymphocytes and, to a lesser extent, eosinophils, with a peak at day 7. By day 14, the inflammatory cell accumulation had declined, and fibrogenesis became evident, with fibroblast accumulation and deposition of extracellular matrix proteins. Fibrotic changes were patchy but persisted to beyond day 64. To elucidate the mechanism underlying this fibrogenesis, we examined bronchoalveolar fluids for the presence of the fibrogenic cytokine transforming growth factor-beta1 and tissues for induction of alpha-smooth muscle actin-rich myofibroblasts. Transforming growth factor-beta1 was transiently elevated from day 7 (peak at day 14) immediately preceding the onset of fibrogenesis. Furthermore, there was a striking accumulation of myofibroblasts from day 7, with the most extensive and intense immunostaining at day 14, ie, coincident with the up-regulation of transforming growth factor-beta1 and onset of fibrogenesis. Thus, we have provided a model of tumor necrosis factor-alpha-mediated pulmonary inflammation and fibrosis in normal adult lung, and we suggest that the fibrogenesis may be mediated by the secondary up-regulation of transforming growth factor-beta1 and induction of pulmonary myofibroblasts.


Journal of Clinical Investigation | 1992

Eosinophils in chronically inflamed human upper airway tissues express transforming growth factor beta 1 gene (TGF beta 1).

I Ohno; R G Lea; K C Flanders; David A. Clark; D Banwatt; Jerry Dolovich; Judah A. Denburg; C B Harley; Jack Gauldie; Manel Jordana

Transforming growth factor beta (TGF beta) is a multifunctional protein which has been suggested to play a central role in the pathogenesis of chronic inflammation and fibrosis. Nasal polyposis is a condition affecting the upper airways characterized by the presence of chronic inflammation and varying degrees of fibrosis. To examine the potential role of TGF beta in the pathogenesis of this condition, we investigated gene expression and cytokine production in nasal polyp tissues as well as in the normal nasal mucosa. By Northern blot analysis using a porcine TGF beta 1 cDNA probe, we detected TGF beta 1-specific mRNA in nasal polyp tissues, as well as in the tissue from a patient with allergic rhinitis, but not in the normal nasal mucosa. By the combination of tissue section staining with chromotrope 2R with in situ hybridization using the same TGF beta 1 probe, we found that approximately 50% of the eosinophils infiltrating the polyp tissue express the TGF beta 1 gene. In addition, immunohistochemical localization of TGF beta 1 was detected associated with extracellular matrix as well as in cells in the stroma. These results suggest that in nasal polyposis where eosinophils are the most prevalent inflammatory cell, TGF beta 1 synthesized by these cells may contribute to the structural abnormalities such as stromal fibrosis and basement membrane thickening which characterize this disease.


Journal of Immunology | 2005

TGF-β and Smad3 Signaling Link Inflammation to Chronic Fibrogenesis

Philippe Bonniaud; Peter J. Margetts; Kjetil Ask; Kathy Flanders; Jack Gauldie; Martin Kolb

Transient adenovirus-mediated gene transfer of IL-1β (AdIL-1β), a proinflammatory cytokine, induces marked inflammation and severe and progressive fibrosis in rat lungs. This is associated with an increase in TGF-β1 concentration in bronchoalveolar lavage (BAL) fluid. TGF-β1 is a key cytokine in the process of fibrogenesis, using intracellular signaling pathways involving Smad2 and Smad3. In this study we investigate whether inflammation induced by IL-1β is able to independently induce lung fibrosis in mice deficient in the Smad3 gene. Seven days after AdIL-1β administration, similar levels of IL-1β transgene are seen in BAL in both wild-type (WT) and knockout (KO) mice, and BAL cell profiles demonstrated a similar marked neutrophilic inflammation. Phospho-Smad2 staining was positive in areas of inflammation in both WT and KO mice at day 7. By day 35 after transient IL-1β expression, WT mice showed marked fibrosis in peribronchial areas, quantified by picrosirius red staining and morphometry. However, there was no evidence of fibrosis or collagen accumulation in IL-1β-treated KO mice, and peribronchial areas were not different from KO mice treated with the control adenovector. TGF-β1 and phospho-Smad2 were strongly positive at day 35 in fibrotic areas observed in WT mice, but no such staining was detectable in KO mice. The IL-1β-induced chronic fibrotic response in mouse lungs is dependent on Smad3. KO and WT animals demonstrated a similar inflammatory response to overexpression of IL-1β indicating that inflammation must link to the Smad3 pathway, likely through TGF-β, to induce progressive fibrosis.


American Journal of Respiratory and Critical Care Medicine | 2011

Ly6Chi Monocytes Direct Alternatively Activated Profibrotic Macrophage Regulation of Lung Fibrosis

Michael A. Gibbons; Alison C. MacKinnon; Kevin Dhaliwal; Rodger Duffin; Alexander T. Phythian-Adams; Nico van Rooijen; Christopher Haslett; Sarah E. M. Howie; A. John Simpson; Nikhil Hirani; Jack Gauldie; John P. Iredale; Tariq Sethi; Stuart J. Forbes

RATIONALE Idiopathic pulmonary fibrosis (IPF) is a devastating disease. Antiinflammatory therapies, including corticosteroids, are of no benefit. The role of monocytes and macrophages is therefore controversial. OBJECTIVES To define the role of monocytes and macrophages during lung fibrogenesis and resolution, and explore the phenotype of the cells involved. METHODS We used multiple in vivo depletional strategies, backed up by adoptive transfer techniques. Further studies were performed on samples from patients with IPF. MEASUREMENTS AND MAIN RESULTS Depletion of lung macrophages during fibrogenesis reduced pulmonary fibrosis as measured by lung collagen (P = 0.0079); fibrosis score (P = 0.0051); and quantitative polymerase chain reaction for surrogate markers of fibrosis Col1 (P = 0.0083) and a-smooth muscle actin (P = 0.0349). There was an associated reduction in markers of the profibrotic alternative macrophage activation phenotype, Ym1 (P = 0.0179), and Arginase 1. The alternative macrophage marker CD163 was expressed on lung macrophages from patients with IPF. Depletion of Ly6Chi circulating monocytes reduced pulmonary fibrosis (P = 0.0052) and the number of Ym1- positive alternatively activated lung macrophages (P = 0.0310). Their adoptive transfer during fibrogenesis exacerbated fibrosis (P = 0.0304); however, adoptively transferred CD45.1 Ly6Chi cells were not found in the lungs of recipient CD45.2 mice. CONCLUSIONS We demonstrate the importance of circulating monocytes and lung macrophages during pulmonary fibrosis, and emphasize the importance of the alternatively activated macrophage phenotype. We show that Ly6Chi monocytes facilitate the progression of pulmonary fibrosis, but are not obviously engrafted into lungs thereafter. Finally, we provide empirical data to suggest that macrophages may have a resolution-promoting role during the reversible phase of bleomycin-induced pulmonary fibrosis.

Collaboration


Dive into the Jack Gauldie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laszlo Farkas

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mary Hitt

University of Alberta

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge