Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jack H. Kaplan is active.

Publication


Featured researches published by Jack H. Kaplan.


Journal of Biological Chemistry | 2009

Copper transport in mammalian cells: special care for a metal with special needs.

Jack H. Kaplan; Svetlana Lutsenko

Copper plays an essential role in human physiology. It is required for respiration, radical defense, neuronal myelination, angiogenesis, and many other processes. Copper has distinct physicochemical properties that pose uncommon challenges for its transport across biological membranes. Only small amounts of copper are present in biological fluids, and essentially none of it exists in a free ion form. These properties and the low redox potential of copper dictate special structural and mechanistic features in copper transporters. This minireview discusses molecular mechanisms through which copper enters and exits human cells.


American Journal of Physiology-cell Physiology | 2013

Cellular glutathione plays a key role in copper uptake mediated by human copper transporter 1

Edward B. Maryon; Shannon A. Molloy; Jack H. Kaplan

Copper is an essential micronutrient. Following entry via the human copper transporter 1 (hCTR1), copper is delivered to several copper chaperones, which subsequently transfer the metal to specific targets via protein:protein interactions. It is has been assumed, but not demonstrated, that chaperones acquire copper directly from hCTR1. However, some reports have pointed to an intermediary role for glutathione (GSH), an abundant copper-binding tri-peptide. To address the issue of how transported copper is acquired by the copper chaperones in vivo, we measured the initial rate of (64)Cu uptake in cells in which the cellular levels of copper chaperones or GSH were substantially depleted or elevated. Knockdown or overexpression of copper chaperones ATOX1, CCS, or both had no effect on the initial rate of (64)Cu entry into HEK293 cells having endogenous or overexpressed hCTR1. In contrast, depleting cellular GSH using L-buthionine-sulfoximine (BSO) caused a 50% decrease in the initial rate of (64)Cu entry in HEK293 cells and other cell types. This decrease was reversed by washout of BSO or GSH replenishment with a permeable ester. BSO treatment under our experimental conditions had no significant effects on the viability, ATP levels, or metal content of the cells. Attenuated (64)Cu uptake in BSO was not due to oxidation of the cysteine in the putative metal-binding motif (HCH) at the intracellular hCTR1 COOH terminus, because a mutant lacking this motif was fully active, and (64)Cu uptake was still reduced by BSO treatment. Our data suggest that GSH plays an important role in copper handling at the entry step.


Biometals | 2007

Copper entry into human cells: progress and unanswered questions

Edward B. Maryon; Shannon A. Molloy; Adriana M. Zimnicka; Jack H. Kaplan

In this brief review we summarize what is known about the role of hCTR1 in mediating the entry of copper into human cells. There is a body of information that clearly identifies this protein as being a major source (though not the only source) of copper entry into human cells, and thus a crucial element of copper homeostasis. However, much remains that is poorly understood and key aspects of the physiological roles of hCTR1 and its regulation are only superficially appreciated. The particular characteristics of a transport process that in vivo involves the binding, transmembrane transport and release of a substrate that is not present in a free form in the intracellular or extracellular compartments poses particular challenges that are not encountered in the transport of more familiar physiologically important metal cations. Thus much of what we have learned about the more commonly encountered transported ions provides an inadequate model for studies of copper homeostasis. In this article we review progress made and identify the major questions that need to be resolved before an adequate description is attained of how copper entry into human cells is mediated and regulated by hCTR1.


Molecular Pharmacology | 2013

A Re-Evaluation of the Role of hCTR1, the Human High-Affinity Copper Transporter, in Platinum-Drug Entry into Human Cells

Kristin Ivy; Jack H. Kaplan

Cisplatin (cDDP) is an anticancer drug used in a number of malignancies, including testicular, ovarian, cervical, bladder, lung, head, and neck cancers. Its use is limited by the development of resistance, often rationalized via effects on cellular uptake. It has been claimed that human copper transporter 1 (hCTR1), the human high-affinity copper transporter, is the major entry pathway for cDDP and related drugs via a mechanism that mimics copper. This is an unexpected property of hCTR1, a highly selective copper (I) transporter. We compared the uptake rates of copper with cDDP (and several analogs) into human embryonic kidney 293 cells overexpressing wild-type or mutant hCTR1, mouse embryonic fibroblasts that do or do not express CTR1, and human ovarian tumor cells that are sensitive or resistant to cDDP. We have also compared the effects of extracellular copper, which causes regulatory endocytosis of hCTR1, to those of cDDP. We confirm the correlation between higher hCTR1 levels and higher platinum drug uptake in tumor cells sensitive to the drug. However, we show that hCTR1 is not the major entry route of platinum drugs, and that the copper transporter is not internalized in response to extracellular drug. Our data suggest the major entry pathway for platinum drugs is not saturable at relevant concentrations and not protein-mediated. Clinical trials have been initiated that depend upon regulating membrane levels of hCTR1. If reduced drug uptake is a major factor in resistance, hCTR1 is unlikely to be a productive target in attempts to enhance efficacy, although the proteins involved in copper homeostasis may play a role.


Circulation Research | 2010

Unexpected Role of the Copper Transporter ATP7A in PDGF-Induced Vascular Smooth Muscle Cell Migration

Takashi Ashino; Varadarajan Sudhahar; Norifumi Urao; Jin Oshikawa; Gin Fu Chen; Huan Wang; Yuqing Huo; Lydia Finney; Stefan Vogt; Ronald D. McKinney; Edward B. Maryon; Jack H. Kaplan; Masuko Ushio-Fukai; Tohru Fukai

Rationale: Copper, an essential nutrient, has been implicated in vascular remodeling and atherosclerosis with unknown mechanism. Bioavailability of intracellular copper is regulated not only by the copper importer CTR1 (copper transporter 1) but also by the copper exporter ATP7A (Menkes ATPase), whose function is achieved through copper-dependent translocation from trans-Golgi network (TGN). Platelet-derived growth factor (PDGF) promotes vascular smooth muscle cell (VSMC) migration, a key component of neointimal formation. Objective: To determine the role of copper transporter ATP7A in PDGF-induced VSMC migration. Methods and Results: Depletion of ATP7A inhibited VSMC migration in response to PDGF or wound scratch in a CTR1/copper-dependent manner. PDGF stimulation promoted ATP7A translocation from the TGN to lipid rafts, which localized at the leading edge, where it colocalized with PDGF receptor and Rac1, in migrating VSMCs. Mechanistically, ATP7A small interfering RNA or CTR small interfering RNA prevented PDGF-induced Rac1 translocation to the leading edge, thereby inhibiting lamellipodia formation. In addition, ATP7A depletion prevented a PDGF-induced decrease in copper level and secretory copper enzyme precursor prolysyl oxidase (Pro-LOX) in lipid raft fraction, as well as PDGF-induced increase in LOX activity. In vivo, ATP7A expression was markedly increased and copper accumulation was observed by synchrotron-based x-ray fluorescence microscopy at neointimal VSMCs in wire injury model. Conclusions: These findings suggest that ATP7A plays an important role in copper-dependent PDGF-stimulated VSMC migration via recruiting Rac1 to lipid rafts at the leading edge, as well as regulating LOX activity. This may contribute to neointimal formation after vascular injury. Our findings provide insight into ATP7A as a novel therapeutic target for vascular remodeling and atherosclerosis.


The Journal of Physiology | 2015

Na+/Ca2+ exchange and Na+/K+‐ATPase in the heart

Michael J. Shattock; Michela Ottolia; Donald M. Bers; Mordecai P. Blaustein; Andrii Boguslavskyi; Julie Bossuyt; John H.B. Bridge; Ye Chen-Izu; Colleen E. Clancy; Andrew G. Edwards; Joshua I. Goldhaber; Jack H. Kaplan; Jerry B. Lingrel; Davor Pavlovic; Kenneth D. Philipson; Karin R. Sipido; Zi Jian Xie

This paper is the third in a series of reviews published in this issue resulting from the University of California Davis Cardiovascular Symposium 2014: Systems approach to understanding cardiac excitation–contraction coupling and arrhythmias: Na+ channel and Na+ transport. The goal of the symposium was to bring together experts in the field to discuss points of consensus and controversy on the topic of sodium in the heart. The present review focuses on cardiac Na+/Ca2+ exchange (NCX) and Na+/K+‐ATPase (NKA). While the relevance of Ca2+ homeostasis in cardiac function has been extensively investigated, the role of Na+ regulation in shaping heart function is often overlooked. Small changes in the cytoplasmic Na+ content have multiple effects on the heart by influencing intracellular Ca2+ and pH levels thereby modulating heart contractility. Therefore it is essential for heart cells to maintain Na+ homeostasis. Among the proteins that accomplish this task are the Na+/Ca2+ exchanger (NCX) and the Na+/K+ pump (NKA). By transporting three Na+ ions into the cytoplasm in exchange for one Ca2+ moved out, NCX is one of the main Na+ influx mechanisms in cardiomyocytes. Acting in the opposite direction, NKA moves Na+ ions from the cytoplasm to the extracellular space against their gradient by utilizing the energy released from ATP hydrolysis. A fine balance between these two processes controls the net amount of intracellular Na+ and aberrations in either of these two systems can have a large impact on cardiac contractility. Due to the relevant role of these two proteins in Na+ homeostasis, the emphasis of this review is on recent developments regarding the cardiac Na+/Ca2+ exchanger (NCX1) and Na+/K+ pump and the controversies that still persist in the field.


Traffic | 2009

Cell‐Specific Trafficking Suggests a new role for Renal ATP7B in the Intracellular Copper Storage

Natalie L. Barnes; Mee Y. Bartee; Lita Braiterman; Arnab Gupta; Vladimir Ustiyan; Vesna Zuzel; Jack H. Kaplan; Ann L. Hubbard; Svetlana Lutsenko

Human Cu‐ATPases ATP7A and ATP7B maintain copper homeostasis through regulated trafficking between intracellular compartments. Inactivation of these transporters causes Menkes disease and Wilson disease, respectively. In Menkes disease, copper accumulates in kidneys and causes tubular damage, indicating that the renal ATP7B does not compensate for the loss of ATP7A function. We show that this is likely due to a kidney‐specific regulation of ATP7B. Unlike ATP7A (or hepatic ATP7B) which traffics from the TGN to export copper, renal ATP7B does not traffic and therefore is unlikely to mediate copper export. The lack of ATP7B trafficking is not on account of the loss of a kinase‐mediated phosphorylation or simultaneous presence of ATP7A in renal cells. Rather, the renal ATP7B appears 2–3 kDa smaller than hepatic ATP7B. Recombinant ATP7B expressed in renal cells is similar to hepatic protein in size and trafficking. The analysis of ATP7B mRNA revealed a complex behavior of exon 1 upon amplification, suggesting that it could be inefficiently translated. Recombinant ATP7B lacking exon 1 traffics differently in renal and hepatic cells, but does not fully recapitulate the endogenous phenotype. We discuss factors that may contribute to cell‐specific behavior of ATP7B and propose a role for renal ATP7B in intracellular copper storage.


Circulation Research | 2010

Unexpected role of the copper transporter ATP7A in PDGF-induced vascular smooth

Takashi Ashino; S. Varadarajan; Norifumi Urao; Jin Oshikawa; Gin-Fu Chen; Huan Wang; Yuqing Huo; Lydia Finney; Stefan Vogt; Ronald D. McKinney; Edward B. Maryon; Jack H. Kaplan; Masuko Ushio-Fukai; Tohru Fukai

Rationale: Copper, an essential nutrient, has been implicated in vascular remodeling and atherosclerosis with unknown mechanism. Bioavailability of intracellular copper is regulated not only by the copper importer CTR1 (copper transporter 1) but also by the copper exporter ATP7A (Menkes ATPase), whose function is achieved through copper-dependent translocation from trans-Golgi network (TGN). Platelet-derived growth factor (PDGF) promotes vascular smooth muscle cell (VSMC) migration, a key component of neointimal formation. Objective: To determine the role of copper transporter ATP7A in PDGF-induced VSMC migration. Methods and Results: Depletion of ATP7A inhibited VSMC migration in response to PDGF or wound scratch in a CTR1/copper-dependent manner. PDGF stimulation promoted ATP7A translocation from the TGN to lipid rafts, which localized at the leading edge, where it colocalized with PDGF receptor and Rac1, in migrating VSMCs. Mechanistically, ATP7A small interfering RNA or CTR small interfering RNA prevented PDGF-induced Rac1 translocation to the leading edge, thereby inhibiting lamellipodia formation. In addition, ATP7A depletion prevented a PDGF-induced decrease in copper level and secretory copper enzyme precursor prolysyl oxidase (Pro-LOX) in lipid raft fraction, as well as PDGF-induced increase in LOX activity. In vivo, ATP7A expression was markedly increased and copper accumulation was observed by synchrotron-based x-ray fluorescence microscopy at neointimal VSMCs in wire injury model. Conclusions: These findings suggest that ATP7A plays an important role in copper-dependent PDGF-stimulated VSMC migration via recruiting Rac1 to lipid rafts at the leading edge, as well as regulating LOX activity. This may contribute to neointimal formation after vascular injury. Our findings provide insight into ATP7A as a novel therapeutic target for vascular remodeling and atherosclerosis.


Biophysical Journal | 2016

How Mammalian Cells Acquire Copper: An Essential but Potentially Toxic Metal.

Jack H. Kaplan; Edward B. Maryon

Cu is an essential micronutrient, and its role in an array of critical physiological processes is receiving increasing attention. Among these are wound healing, angiogenesis, protection against reactive oxygen species, neurotransmitter synthesis, modulation of normal cell and tumor growth, and many others. Free Cu is absent inside cells, and a network of proteins has evolved to deliver this essential, but potentially toxic, metal ion to its intracellular target sites following uptake. Although the total body content is low (∼100 mg), dysfunction of proteins involved in Cu homeostasis results in several well-characterized human disease states. The initial step in cellular Cu handling is its transport across the plasma membrane, a subject of study for only about the last 25 years. This review focuses on the initial step in Cu homeostasis, the properties of the major protein, hCTR1, that mediates Cu uptake, and the status of our understanding of this highly specialized transport system. Although a high-resolution structure of the protein is still lacking, an array of biochemical and biophysical studies have provided a picture of how hCTR1 mediates Cu(I) transport and how Cu is delivered to the proteins in the intracellular milieu. Recent studies provide evidence that the transporter also plays a key protective role in the regulation of cellular Cu via regulatory endocytosis, lowering its surface expression, in response to elevated Cu loads.


PLOS ONE | 2012

Urinary Copper Elevation in a Mouse Model of Wilson's Disease Is a Regulated Process to Specifically Decrease the Hepatic Copper Load

Lawrence W. Gray; Fangyu Peng; Shannon A. Molloy; Venkata S. Pendyala; Abigael Muchenditsi; Otto Muzik; Jaekwon Lee; Jack H. Kaplan; Svetlana Lutsenko

Body copper homeostasis is regulated by the liver, which removes excess copper via bile. In Wilsons disease (WD), this function is disrupted due to inactivation of the copper transporter ATP7B resulting in hepatic copper overload. High urinary copper is a diagnostic feature of WD linked to liver malfunction; the mechanism behind urinary copper elevation is not fully understood. Using Positron Emission Tomography-Computed Tomography (PET-CT) imaging of live Atp7b−/− mice at different stages of disease, a longitudinal metal analysis, and characterization of copper-binding molecules, we show that urinary copper elevation is a specific regulatory process mediated by distinct molecules. PET-CT and atomic absorption spectroscopy directly demonstrate an age-dependent decrease in the capacity of Atp7b−/− livers to accumulate copper, concomitant with an increase in urinary copper. This reciprocal relationship is specific for copper, indicating that cell necrosis is not the primary cause for the initial phase of metal elevation in the urine. Instead, the urinary copper increase is associated with the down-regulation of the copper-transporter Ctr1 in the liver and appearance of a 2 kDa Small Copper Carrier, SCC, in the urine. SCC is also elevated in the urine of the liver-specific Ctr1 −/− knockouts, which have normal ATP7B function, suggesting that SCC is a normal metabolite carrying copper in the serum. In agreement with this hypothesis, partially purified SCC-Cu competes with free copper for uptake by Ctr1. Thus, hepatic down-regulation of Ctr1 allows switching to an SCC-mediated removal of copper via kidney when liver function is impaired. These results demonstrate that the body regulates copper export through more than one mechanism; better understanding of urinary copper excretion may contribute to an improved diagnosis and monitoring of WD.

Collaboration


Dive into the Jack H. Kaplan's collaboration.

Top Co-Authors

Avatar

Edward B. Maryon

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Masuko Ushio-Fukai

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Shannon A. Molloy

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Tohru Fukai

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kristin Ivy

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Rebecca J. Clifford

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Ronald D. McKinney

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Adriana M. Zimnicka

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Archita Das

University of Illinois at Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge