Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jack H. Lai is active.

Publication


Featured researches published by Jack H. Lai.


Molecular Cancer Therapeutics | 2005

Abrogation of fibroblast activation protein enzymatic activity attenuates tumor growth

Jonathan D. Cheng; Matthildi Valianou; Adrian A. Canutescu; Eileen K. Jaffe; Hyung Ok Lee; Hao Wang; Jack H. Lai; William W. Bachovchin; Louis M. Weiner

Tumor-associated fibroblasts are functionally and phenotypically distinct from normal fibroblasts that are not in the tumor microenvironment. Fibroblast activation protein is a 95 kDa cell surface glycoprotein expressed by tumor stromal fibroblasts, and has been shown to have dipeptidyl peptidase and collagenase activity. Site-directed mutagenesis at the catalytic site of fibroblast activation protein, Ser624 → Ala624, resulted in an ∼100,000-fold loss of fibroblast activation protein dipeptidyl peptidase (DPP) activity. HEK293 cells transfected with wild-type fibroblast activation protein, enzymatic mutant (S624A) fibroblast activation protein, or vector alone, were inoculated subcutaneously into immunodeficient mouse to assess the contribution of fibroblast activation protein enzymatic activity to tumor growth. Overexpression of wild-type fibroblast activation protein showed growth potentiation and enhanced tumorigenicity compared with both fibroblast activation protein S624A and vector-transfected HEK293 xenografts. HEK293 cells transfected with fibroblast activation protein S624A showed tumor growth rates and tumorigenicity potential similar only to vector-transfected HEK293. In vivo assessment of fibroblast activation protein DPP activity of these tumors showed enhanced enzymatic activity of wild-type fibroblast activation protein, with only baseline levels of fibroblast activation protein DPP activity in either fibroblast activation protein S624A or vector-only xenografts. These results indicate that the enzymatic activity of fibroblast activation protein is necessary for fibroblast activation protein–driven tumor growth in the HEK293 xenograft model system. This establishes the proof-of-principle that the enzymatic activity of fibroblast activation protein plays an important role in the promotion of tumor growth, and provides an attractive target for therapeutics designed to alter fibroblast activation protein–induced tumor growth by targeting its enzymatic activity.


Journal of Medicinal Chemistry | 2008

Dipeptide boronic acid inhibitors of dipeptidyl peptidase IV: determinants of potency and in vivo efficacy and safety.

Beth A. Connolly; David G. Sanford; Amrita K. Chiluwal; Sarah E. Healey; Diane E. Peters; Matthew T. Dimare; Wengen Wu; Yuxin Liu; Hlaing H. Maw; Yuhong Zhou; Youhua Li; Zhiping Jin; James L. Sudmeier; Jack H. Lai; William W. Bachovchin

Dipeptidyl peptidase IV (DPP-IV; E.C. 3.4.14.5), a serine protease that degrades the incretin hormones GLP-1 and GIP, is now a validated target for the treatment of type 2 diabetes. Dipeptide boronic acids, among the first, and still among the most potent DPP-IV inhibitors known, suffer from a concern over their safety. Here we evaluate the potency, in vivo efficacy, and safety of a selected set of these inhibitors. The adverse effects induced by boronic acid-based DPP-IV inhibitors are essentially limited to what has been observed previously for non-boronic acid inhibitors and attributed to cross-reactivity with DPP8/9. While consistent with the DPP8/9 hypothesis, they are also consistent with cross-reactivity with some other intracellular target. The results further show that the potency of simple dipeptide boronic acid-based inhibitors can be combined with selectivity against DPP8/9 in vivo to produce agents with a relatively wide therapeutic index (>500) in rodents.


FEBS Open Bio | 2014

Quantitation of fibroblast activation protein (FAP)-specific protease activity in mouse, baboon and human fluids and organs

Fiona M. Keane; Tsun-Wen Yao; Stefanie Seelk; Margaret G. Gall; Sumaiya Chowdhury; Sarah E. Poplawski; Jack H. Lai; Youhua Li; Wengen Wu; Penny Farrell; Ana Julia Vieira de Ribeiro; Brenna Osborne; Denise M.T. Yu; Devanshi Seth; Khairunnessa Rahman; Paul S. Haber; A. Kemal Topaloglu; Chuanmin Wang; Sally Thomson; Annemarie Hennessy; John Prins; Stephen M. Twigg; Geoffrey W. McCaughan; William W. Bachovchin; Mark D. Gorrell

The protease fibroblast activation protein (FAP) is a specific marker of activated mesenchymal cells in tumour stroma and fibrotic liver. A specific, reliable FAP enzyme assay has been lacking. FAPs unique and restricted cleavage of the post proline bond was exploited to generate a new specific substrate to quantify FAP enzyme activity. This sensitive assay detected no FAP activity in any tissue or fluid of FAP gene knockout mice, thus confirming assay specificity. Circulating FAP activity was ∼20‐ and 1.3‐fold less in baboon than in mouse and human plasma, respectively. Serum and plasma contained comparable FAP activity. In mice, the highest levels of FAP activity were in uterus, pancreas, submaxillary gland and skin, whereas the lowest levels were in brain, prostate, leukocytes and testis. Baboon organs high in FAP activity included skin, epididymis, bladder, colon, adipose tissue, nerve and tongue. FAP activity was greatly elevated in tumours and associated lymph nodes and in fungal‐infected skin of unhealthy baboons. FAP activity was 14‐ to 18‐fold greater in cirrhotic than in non‐diseased human liver, and circulating FAP activity was almost doubled in alcoholic cirrhosis. Parallel DPP4 measurements concorded with the literature, except for the novel finding of high DPP4 activity in bile. The new FAP enzyme assay is the first to be thoroughly characterised and shows that FAP activity is measurable in most organs and at high levels in some. This new assay is a robust tool for specific quantitation of FAP enzyme activity in both preclinical and clinical samples, particularly liver fibrosis.


Nature Chemical Biology | 2014

A high-throughput, multiplexed assay for superfamily-wide profiling of enzyme activity.

Daniel A. Bachovchin; Luke W Koblan; Wengen Wu; Yuxin Liu; Youhua Li; Peng Zhao; Iwona Woznica; Ying Shu; Jack H. Lai; Sarah E. Poplawski; Christopher P. Kiritsy; Sarah E. Healey; Matthew T. Dimare; David G. Sanford; Robert S Munford; William W. Bachovchin; Todd R. Golub

The selectivity of an enzyme inhibitor is a key determinant of its usefulness as a tool compound or its safety as a drug. Yet selectivity is never assessed comprehensively in the early stages of the drug discovery process, and only rarely even in the later stages, because technical limitations prohibit doing otherwise. Here, we report EnPlex, an efficient, high-throughput method for simultaneously assessing inhibitor potency and specificity, and pilot its application to 96 serine hydrolases. EnPlex analysis of widely used serine hydrolase inhibitors revealed numerous previously unrecognized off-target interactions, some of which may help to explain previously confounding adverse effects. In addition, EnPlex screening of a hydrolase-directed library of boronic acid- and nitrile-containing compounds provided dual potency/selectivity structure-activity relationships from which lead candidates could be more effectively prioritized. Follow-up of a series of dipeptidyl peptidase 4 (DPP4) inhibitors showed that EnPlex indeed predicted efficacy and safety in animal models. These results demonstrate the feasibility and value of high-throughput, superfamily-wide selectivity profiling, and suggest such profiling can be incorporated into the earliest stages of drug discovery.


Journal of Medicinal Chemistry | 2013

Identification of selective and potent inhibitors of fibroblast activation protein and prolyl oligopeptidase.

Sarah E. Poplawski; Jack H. Lai; Youhua Li; Zhiping Jin; Yuxin Liu; Wengen Wu; Yong Wu; Yuhong Zhou; James L. Sudmeier; David G. Sanford; William W. Bachovchin

Fibroblast activation protein (FAP) is a serine protease selectively expressed on reactive stromal fibroblasts of epithelial carcinomas. It is widely believed to play a role in tumor invasion and metastasis and therefore to represent a potential new drug target for cancer. Investigation into its biological function, however, has been hampered by the current unavailability of selective inhibitors. The challenge has been in identifying inhibitors that are selective for FAP over both the dipeptidyl peptidases (DPPs), with which it shares exopeptidase specificity, and prolyl oligopeptidase (PREP), with which it shares endopeptidase specificity. Here, we report the first potent FAP inhibitor with selectivity over both the DPPs and PREP, N-(pyridine-4-carbonyl)-d-Ala-boroPro (ARI-3099, 6). We also report a similarly potent and selective PREP inhibitor, N-(pyridine-3-carbonyl)-Val-boroPro (ARI-3531, 22). Both are boronic acid based inhibitors, demonstrating that high selectivity can be achieved using this electrophile. The inhibitors are stable, easy to synthesize, and should prove to be useful in helping to elucidate the biological functions of these two unique and interesting enzymes, as well as their potential as drug targets.


PLOS ONE | 2016

Human FGF-21 Is a Substrate of Fibroblast Activation Protein.

Andrew L. Coppage; Kathryn R. Heard; Matthew T. Dimare; Yuxin Liu; Wengen Wu; Jack H. Lai; William W. Bachovchin

FGF-21 is a key regulator of metabolism and potential drug candidate for the treatment of type II diabetes and other metabolic disorders. However, the half-life of active, circulating, human FGF-21 has recently been shown to be limited in mice and monkeys by a proteolytic cleavage between P171 and S172. Here, we show that fibroblast activation protein is the enzyme responsible for this proteolysis by demonstrating that purified FAP cleaves human FGF-21 at this site in vitro, and that an FAP-specific inhibitor, ARI-3099, blocks the activity in mouse, monkey and human plasma and prolongs the half-life of circulating human FGF-21 in mice. Mouse FGF-21, however, lacks the FAP cleavage site and is not cleaved by FAP. These findings indicate FAP may function in the regulation of metabolism and that FAP inhibitors may prove useful in the treatment of diabetes and metabolic disorders in humans, but pre-clinical proof of concept studies in rodents will be problematic.


Journal of Cardiovascular Pharmacology and Therapeutics | 2012

Reverse D4F, an Apolipoprotein-AI Mimetic Peptide, Inhibits Atherosclerosis in ApoE-null Mice

Shucun Qin; Vaijinath S. Kamanna; Jack H. Lai; Tianjiao Liu; Shobha H. Ganji; Lin-Hua Zhang; William W. Bachovchin; Moti L. Kashyap

Objective: Synthetic class A amphipathic helical peptide analogs of apolipoprotein-AI (apoAI; with varied phenylalanine residues) are emerging therapeutic approaches under investigation for atherosclerosis. Utilizing retroinverso sequencing, we designed reverse-D4F (Rev-D4F) peptide with 18 d-amino acids containing 4 phenylalanine residues and reverse order that allows the side chain residues to be of exact alignment and superimposable to those of the parent l-amino acid peptide. This study examined the effect of Rev-D4F on atherosclerosis in apolipoprotein E (apoE)-null mice and the underlying mechanisms. Materials/Methods: ApoE-null mice were fed a chow diet and administered water (control), Rev-D4F, or L4F mimetic peptides (0.4 mg/mL, equivalent to 1.6 mg/d) orally in drinking water for 6 weeks. Aortic root atherosclerotic lesion area, lesion macrophage content, and the ability of plasma high-density lipoprotein (HDL) to influence monocyte chemotaxis were measured. Results: Rev-D4F significantly decreased aortic sinus atherosclerotic lesion area and lesion macrophage content without affecting plasma total and HDL-cholesterol levels in apoE-null mice. The HDL from Rev-D4F-treated mice showed enhanced anti-inflammatory monocyte chemotactic activity, while low-density lipoprotein (LDL) exhibited reduced proinflammatory activity. In in vitro studies, Rev-D4F inhibited LDL oxidation, endothelial cell vascular cell adhesion molecule 1 (VCAM-1), and monocyte chemotactic factor 1 (MCP-1) expression, and monocyte adhesion to aortic endothelial cells. Conclusions: The Rev-D4F inhibits atherosclerosis by inhibiting endothelial inflammatory/oxidative events and improving HDL function. The data suggest that Rev-D4F may be an effective apoAI mimetic peptide for further development in preventing atherosclerosis.


Nature Chemical Biology | 2017

DPP8 and DPP9 inhibition induces pro-caspase-1-dependent monocyte and macrophage pyroptosis

Marian C. Okondo; Darren C. Johnson; Ramya Sridharan; Eun Bin Go; Ashley J. Chui; Mitchell S Wang; Sarah E. Poplawski; Wengen Wu; Yuxin Liu; Jack H. Lai; David G. Sanford; Michael O Arciprete; Todd R. Golub; William W. Bachovchin; Daniel A. Bachovchin

Val-boroPro (Talabostat, PT-100), a nonselective inhibitor of post-proline cleaving serine proteases, stimulates mammalian immune systems through an unknown mechanism of action. Despite this lack of mechanistic understanding, Val-boroPro has attracted substantial interest as a potential anticancer agent, reaching phase 3 trials in humans. Here we show that Val-boroPro stimulates the immune system by triggering a proinflammatory form of cell death in monocytes and macrophages known as pyroptosis. We demonstrate that the inhibition of two serine proteases, DPP8 and DPP9, activates the pro-protein form of caspase-1 independent of the inflammasome adaptor ASC. Activated pro-caspase-1 does not efficiently process itself or IL-1β but does cleave and activate gasdermin D to induce pyroptosis. Mice lacking caspase-1 do not show immune stimulation after treatment with Val-boroPro. Our data identify what is to our knowledge the first small molecule that induces pyroptosis and reveals a new checkpoint that controls the activation of the innate immune system.


Molecular Endocrinology | 2014

Sphingosine Kinase 1 Isoform-Specific Interactions in Breast Cancer

Daniel Yagoub; Marc R. Wilkins; Angelina J. Lay; Dominik C. Kaczorowski; Diana Hatoum; Sarah Bajan; Gyorgy Hutvagner; Jack H. Lai; Wengen Wu; Rosetta Martiniello-Wilks; Pu Xia; Eileen McGowan

Sphingosine kinase 1 (SK1) is a signaling enzyme that catalyzes the formation of sphingosine-1-phosphate. Overexpression of SK1 is causally associated with breast cancer progression and resistance to therapy. SK1 inhibitors are currently being investigated as promising breast cancer therapies. Two major transcriptional isoforms, SK143 kDa and SK151 kDa, have been identified; however, the 51 kDa variant is predominant in breast cancer cells. No studies have investigated the protein-protein interactions of the 51 kDa isoform and whether the two SK1 isoforms differ significantly in their interactions. Seeking an understanding of the regulation and role of SK1, we used a triple-labeling stable isotope labeling by amino acids in cell culture-based approach to identify SK1-interacting proteins common and unique to both isoforms. Of approximately 850 quantified proteins in SK1 immunoprecipitates, a high-confidence list of 30 protein interactions with each SK1 isoform was generated via a meta-analysis of multiple experimental replicates. Many of the novel identified SK1 interaction partners such as supervillin, drebrin, and the myristoylated alanine-rich C-kinase substrate-related protein supported and highlighted previously implicated roles of SK1 in breast cancer cell migration, adhesion, and cytoskeletal remodeling. Of these interactions, several were found to be exclusive to the 43 kDa isoform of SK1, including the protein phosphatase 2A, a previously identified SK1-interacting protein. Other proteins such as allograft inflammatory factor 1-like protein, the latent-transforming growth factor β-binding protein, and dipeptidyl peptidase 2 were found to associate exclusively with the 51 kDa isoform of SK1. In this report, we have identified common and isoform-specific SK1-interacting partners that provide insight into the molecular mechanisms that drive SK1-mediated oncogenicity.


Journal of Biological Chemistry | 2015

Cleavage Specificity of Mycobacterium tuberculosis ClpP1P2 Protease and Identification of Novel Peptide Substrates and Boronate Inhibitors with Anti-bacterial Activity

Tatos Akopian; Olga Kandror; Christopher Tsu; Jack H. Lai; Wengen Wu; Yuxin Liu; Peng Zhao; Annie Park; Lisa Wolf; Lawrence R. Dick; Eric J. Rubin; William W. Bachovchin; Alfred L. Goldberg

Background: ClpP1P2 is a novel protease complex essential for viability of Mycobacterium tuberculosis. Results: Cleavage preferences of ClpP1P2 were defined, which allowed us to design potent substrate-based boronate inhibitors showing anti-mycobacterial activity. Conclusion: Excellent new fluorogenic peptide substrates of ClpP1P2 were obtained, and novel enzyme properties were identified. Significance: Selective inhibition of ClpP1P2 activity is a promising approach for drug development. The ClpP1P2 protease complex is essential for viability in Mycobacteria tuberculosis and is an attractive drug target. Using a fluorogenic tripeptide library (Ac-X3X2X1-aminomethylcoumarin) and by determining specificity constants (kcat/Km), we show that ClpP1P2 prefers Met ≫ Leu > Phe > Ala in the X1 position, basic residues or Trp in the X2 position, and Pro ≫ Ala > Trp in the X3 position. We identified peptide substrates that are hydrolyzed up to 1000 times faster than the standard ClpP substrate. These positional preferences were consistent with cleavage sites in the protein GFPssrA by ClpXP1P2. Studies of ClpP1P2 with inactive ClpP1 or ClpP2 indicated that ClpP1 was responsible for nearly all the peptidase activity, whereas both ClpP1 and ClpP2 contributed to protein degradation. Substrate-based peptide boronates were synthesized that inhibit ClpP1P2 peptidase activity in the submicromolar range. Some of them inhibited the growth of Mtb cells in the low micromolar range indicating that cleavage specificity of Mtb ClpP1P2 can be used to design novel anti-bacterial agents.

Collaboration


Dive into the Jack H. Lai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge