Jack J. W. A. van Loon
University of Amsterdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jack J. W. A. van Loon.
The FASEB Journal | 2012
Jirka Grosse; Markus Wehland; Jessica Pietsch; Xiao Ma; Claudia Ulbrich; Herbert Schulz; Katrin Saar; Norbert Hubner; Jens Hauslage; Ruth Hemmersbach; Markus Braun; Jack J. W. A. van Loon; Nicole Vagt; Manfred Infanger; Christoph Eilles; Marcel Egli; Peter Richter; Theo Baltz; Ralf Einspanier; Soroush Sharbati; Daniela Grimm
This study focused on the effects of short‐term microgravity (22 s) on the gene expression and morphology of endothelial cells (ECs) and evaluated gravisensitive signaling elements. ECs were investigated during four German Space Agency (Deutsches Zentrum für Luft‐ und Raumfahrt) parabolic flight campaigns. Hoechst 33342 and acridine orange/ethidium bromide staining showed no signs of cell death in ECs after 31 parabolas (P31). Gene array analysis revealed 320 significantly regulated genes after the first parabola (P1) and P31. COL4A5, COL8A1, ITGA6, ITGA10, and ITGB3 mRNAs were down‐regulated after P1. EDN1 and TNFRSF12A mRNAs were up‐regulated. ADAM19, CARD8, CD40, GSN, PRKCA (all down‐regulated after P1), and PRKAA1 (AMPKα1) mRNAs (up‐regulated) provide a very early protective mechanism of cell survival induced by 22 s microgravity. The ABL2 gene was significantly up‐regulated after P1 and P31, TUBB was slightly induced, but ACTA2 and VIM mRNAs were not changed. β‐Tubulin immunofluorescence revealed a cytoplasmic rearrangement. Vibration had no effect. Hypergravity reduced CARD8, NOS3, VASH1, SERPINH1 (all P1), CAV2, ADAM19, TNFRSF12A, CD40, and ITGA6 (P31) mRNAs. These data suggest that microgravity alters the gene expression patterns and the cytoskeleton of ECs very early. Several gravisensitive signaling elements, such as AMPKα1 and integrins, are involved in the reaction of ECs to altered gravity.—Grosse, J., Wehland, M., Pietsch, J., Ma, X., Ulbrich, C., Schulz, H., Saar, K., Hübner, N., Hauslage, J., Hemmersbach, R., Braun, M., van Loon, J., Vagt, N., Infanger, M., Eilles, C., Egli, M., Richter, P., Baltz, T., Einspanier, R., Sharbati, S., Grimm, D. Short‐term weightlessness produced by parabolic flight maneuvers altered gene expression patterns in human endothelial cells. FASEB J. 26, 639–655 (2012). www.fasebj.org
The FASEB Journal | 2014
Daan Vorselen; Wouter H. Roos; F. C. MacKintosh; Gijs J. L. Wuite; Jack J. W. A. van Loon
A large body of evidence indicates that single cells in vitro respond to changes in gravity, and that this response might play an important role for physiological changes at the organism level during spaceflight. Gravity can lead to changes in cell proliferation, differentiation, signaling, and gene expression. At first glance, gravitational forces seem too small to affect bodies with the size of a cell. Thus, the initial response to gravity is both puzzling and important for understanding physiological changes in space. This also offers a unique environment to study the mechanical response of cells. In the past 2 decades, important steps have been made in the field of mechanobiology, and we use these advances to reevaluate the response of single cells to changes in gravity. Recent studies have focused on the cytoskeleton as initial gravity sensor. Thus, we review the observed changes in the cytoskeleton in a microgravity environment, both during spaceflight and in ground‐based simulation techniques. We also evaluate to what degree the current experimental evidence supports the cytoskeleton as primary gravity sensor. Finally, we consider how the cytoskeleton itself could be affected by changed gravity. To make the next step toward understanding the response of cells to altered gravity, the challenge will be to track changes quantitatively and on short timescales.—Vorselen, D., Roos, W. H., MacKintosh, F. C., Wuite, G. J. L., van Loon, J. J. W. A. The role of the cytoskeleton in sensing changes in gravity by nonspecialized cells. FASEB J. 28, 536–547 (2014). www.fasebj.org
BioMed Research International | 2014
Claudia Ulbrich; Markus Wehland; Jessica Pietsch; Ganna Aleshcheva; Petra Wise; Jack J. W. A. van Loon; Nils E. Magnusson; Manfred Infanger; Jirka Grosse; Christoph Eilles; Alamelu Sundaresan; Daniela Grimm
How microgravity affects the biology of human cells and the formation of 3D cell cultures in real and simulated microgravity (r- and s-µg) is currently a hot topic in biomedicine. In r- and s-µg, various cell types were found to form 3D structures. This review will focus on the current knowledge of tissue engineering in space and on Earth using systems such as the random positioning machine (RPM), the 2D-clinostat, or the NASA-developed rotating wall vessel bioreactor (RWV) to create tissue from bone, tumor, and mesenchymal stem cells. To understand the development of 3D structures, in vitro experiments using s-µg devices can provide valuable information about modulations in signal-transduction, cell adhesion, or extracellular matrix induced by altered gravity conditions. These systems also facilitate the analysis of the impact of growth factors, hormones, or drugs on these tissue-like constructs. Progress has been made in bone tissue engineering using the RWV, and multicellular tumor spheroids (MCTS), formed in both r- and s-µg, have been reported and were analyzed in depth. Currently, these MCTS are available for drug testing and proteomic investigations. This review provides an overview of the influence of µg on the aforementioned cells and an outlook for future perspectives in tissue engineering.
BMC Genomics | 2012
Ana I. Manzano; Jack J. W. A. van Loon; Peter C. M. Christianen; Juana María González-Rubio; F. Javier Medina; Raúl Herranz
BackgroundBiological systems respond to changes in both the Earths magnetic and gravitational fields, but as experiments in space are expensive and infrequent, Earth-based simulation techniques are required. A high gradient magnetic field can be used to levitate biological material, thereby simulating microgravity and can also create environments with a reduced or an enhanced level of gravity (g), although special attention should be paid to the possible effects of the magnetic field (B) itself.ResultsUsing diamagnetic levitation, we exposed Arabidopsis thaliana in vitro callus cultures to five environments with different levels of effective gravity and magnetic field strengths. The environments included levitation, i.e. simulated μg* (close to 0 g* at B = 10.1 T), intermediate g* (0.1 g* at B = 14.7 T) and enhanced gravity levels (1.9 g* at B = 14.7 T and 2 g* at B = 10.1 T) plus an internal 1 g* control (B = 16.5 T). The asterisk denotes the presence of the background magnetic field, as opposed to the effective gravity environments in the absence of an applied magnetic field, created using a Random Position Machine (simulated μg) and a Large Diameter Centrifuge (2 g).Microarray analysis indicates that changes in the overall gene expression of cultured cells exposed to these unusual environments barely reach significance using an FDR algorithm. However, it was found that gravitational and magnetic fields produce synergistic variations in the steady state of the transcriptional profile of plants. Transcriptomic results confirm that high gradient magnetic fields (i.e. to create μg* and 2 g* conditions) have a significant effect, mainly on structural, abiotic stress genes and secondary metabolism genes, but these subtle gravitational effects are only observable using clustering methodologies.ConclusionsA detailed microarray dataset analysis, based on clustering of similarly expressed genes (GEDI software), can detect underlying global-scale responses, which cannot be detected by means of individual gene expression techniques using raw or corrected p values (FDR). A subtle, but consistent, genome-scale response to hypogravity environments was found, which was opposite to the response in a hypergravity environment.
BMC Genomics | 2012
Raúl Herranz; Oliver J. Larkin; Camelia E. Dijkstra; Richard Hill; Paul Anthony; M. R. Davey; L. Eaves; Jack J. W. A. van Loon; F. Javier Medina; Roberto Marco
BackgroundMany biological systems respond to the presence or absence of gravity. Since experiments performed in space are expensive and can only be undertaken infrequently, Earth-based simulation techniques are used to investigate the biological response to weightlessness. A high gradient magnetic field can be used to levitate a biological organism so that its net weight is zero.ResultsWe have used a superconducting magnet to assess the effect of diamagnetic levitation on the fruit fly D. melanogaster in levitation experiments that proceeded for up to 22 consecutive days. We have compared the results with those of similar experiments performed in another paradigm for microgravity simulation, the Random Positioning Machine (RPM). We observed a delay in the development of the fruit flies from embryo to adult. Microarray analysis indicated changes in overall gene expression of imagoes that developed from larvae under diamagnetic levitation, and also under simulated hypergravity conditions. Significant changes were observed in the expression of immune-, stress-, and temperature-response genes. For example, several heat shock proteins were affected. We also found that a strong magnetic field, of 16.5 Tesla, had a significant effect on the expression of these genes, independent of the effects associated with magnetically-induced levitation and hypergravity.ConclusionsDiamagnetic levitation can be used to simulate an altered effective gravity environment in which gene expression is tuned differentially in diverse Drosophila melanogaster populations including those of different age and gender. Exposure to the magnetic field per se induced similar, but weaker, changes in gene expression.
PLOS ONE | 2015
Jessica Aceto; Rasoul Nourizadeh-Lillabadi; Nadia Dardenne; Nathalie Jeanray; Louis Wehenkel; Peter Aleström; Jack J. W. A. van Loon; Marc Muller
Teleost fish such as zebrafish (Danio rerio) are increasingly used for physiological, genetic and developmental studies. Our understanding of the physiological consequences of altered gravity in an entire organism is still incomplete. We used altered gravity and drug treatment experiments to evaluate their effects specifically on bone formation and more generally on whole genome gene expression. By combining morphometric tools with an objective scoring system for the state of development for each element in the head skeleton and specific gene expression analysis, we confirmed and characterized in detail the decrease or increase of bone formation caused by a 5 day treatment (from 5dpf to 10 dpf) of, respectively parathyroid hormone (PTH) or vitamin D3 (VitD3). Microarray transcriptome analysis after 24 hours treatment reveals a general effect on physiology upon VitD3 treatment, while PTH causes more specifically developmental effects. Hypergravity (3g from 5dpf to 9 dpf) exposure results in a significantly larger head and a significant increase in bone formation for a subset of the cranial bones. Gene expression analysis after 24 hrs at 3g revealed differential expression of genes involved in the development and function of the skeletal, muscular, nervous, endocrine and cardiovascular systems. Finally, we propose a novel type of experimental approach, the Reduced Gravity Paradigm, by keeping the developing larvae at 3g hypergravity for the first 5 days before returning them to 1g for one additional day. 5 days exposure to 3g during these early stages also caused increased bone formation, while gene expression analysis revealed a central network of regulatory genes (hes5, sox10, lgals3bp, egr1, edn1, fos, fosb, klf2, gadd45ba and socs3a) whose expression was consistently affected by the transition from hyper- to normal gravity.
npj Microgravity | 2017
Thomas Lang; Jack J. W. A. van Loon; Susan A. Bloomfield; Laurence Vico; Angèle Chopard; Joern Rittweger; Antonios Kyparos; Dieter Blottner; Ilkka Vuori; Rupert Gerzer; Peter R. Cavanagh
Without effective countermeasures, the musculoskeletal system is altered by the microgravity environment of long-duration spaceflight, resulting in atrophy of bone and muscle tissue, as well as in deficits in the function of cartilage, tendons, and vertebral disks. While inflight countermeasures implemented on the International Space Station have evidenced reduction of bone and muscle loss on low-Earth orbit missions of several months in length, important knowledge gaps must be addressed in order to develop effective strategies for managing human musculoskeletal health on exploration class missions well beyond Earth orbit. Analog environments, such as bed rest and/or isolation environments, may be employed in conjunction with large sample sizes to understand sex differences in countermeasure effectiveness, as well as interaction of exercise with pharmacologic, nutritional, immune system, sleep and psychological countermeasures. Studies of musculoskeletal biomechanics, involving both human subject and computer simulation studies, are essential to developing strategies to avoid bone fractures or other injuries to connective tissue during exercise and extravehicular activities. Animal models may be employed to understand effects of the space environment that cannot be modeled using human analog studies. These include studies of radiation effects on bone and muscle, unraveling the effects of genetics on bone and muscle loss, and characterizing the process of fracture healing in the mechanically unloaded and immuno-compromised spaceflight environment. In addition to setting the stage for evidence-based management of musculoskeletal health in long-duration space missions, the body of knowledge acquired in the process of addressing this array of scientific problems will lend insight into the understanding of terrestrial health conditions such as age-related osteoporosis and sarcopenia.
American Journal of Botany | 2009
Joan Allen; Patricia Bisbee; Rebecca L. Darnell; Anxiu Kuang; Lanfang H. Levine; Mary E. Musgrave; Jack J. W. A. van Loon
How gravity influences the growth form and flavor components of plants is of interest to the space program because plants could be used for food and life support during prolonged missions away from the planet, where that constant feature of Earths environment does not prevail. We used plant growth hardware from prior experiments on the space shuttle to grow Brassica rapa and Arabidopsis thaliana plants during 16-d or 11-d hypergravity treatments on large-diameter centrifuge rotors. Both species showed radical changes in growth form, becoming more prostrate with increasing g-loads (2-g and 4-g). In Brassica, height decreased and stems thickened in a linear relationship with increasing g-load. Glucosinolates, secondary compounds that contribute flavor to Brassica, decreased by 140% over the range of micro to 4-g, while the structural secondary compound, lignin, remained constant at ∼15% (w/w) cell wall dry mass. Stem thickening at 4-g was associated with substantial increases in cell size (47%, 226%, and 33% for pith, cortex, and vascular tissue), rather than any change in cell number. The results, which demonstrate the profound effect of gravity on plant growth form and secondary metabolism, are discussed in the context of similar thigmostresses such as touch and wind.
Egyptian Computer Science Journal | 2008
Matthias Rauterberg; Mark A. Neerincx; Karl Tuyls; Jack J. W. A. van Loon
During ultra long space missions (i.e. to Mars), the isolated space environmentaffects a number of physiological, psychosocial and mental processescritically involved in human performance, and it is vital to missions’ success tounderstand the psychological limits. Past experiences in space have shown that themental health of a crew can have a great effect on the success or failure of a mission.Latent and overt stress factors are mental strain, interpersonal problems, andlack of capability to rescue crew members, isolation, monotony, and tedium of lifeaboard an autonomous shuttle. Abstract__ These issues develop very slowly overtime and are very difficult to detect and remedy for observers on the ground. E.g.long-term isolation can lead to sleep deprivation, depression, irritability, anxiety,impaired cognition, and even hostility. Providing astronauts with entertainmentproducts can help to maintain the mental health of the crew. The results of thisproject will deepen the understanding of intra- and inter-individual crew behaviourand related performance, and provide the technical platform for a new type of crew assistance tools based on multi-user computer games.
Technology and Health Care | 2009
Rommel G. Bacabac; Jack J. W. A. van Loon; Theo H. Smit; Jenneke Klein-Nulend
Stochastic resonance is exhibited by many biological systems, where the response to a small stimulus is enhanced with the aid of noise. This intriguing possibility provides a novel paradigm for understanding previously reported osteogenic benefits of low amplitude dynamic loading. However, it is unknown whether bone cell mechanosensitivity is enhanced by noise as an alternative mechanism for an amplified response to small stresses. We studied whether noise of varying intensities enhanced the mechanosensitivity of MC3T3-E1 cells. Nitric oxide (NO) production was measured as the parameter for bone cell activation. Dynamic fluid shear stress stimulated bone cells provided an initial-stress kick was implemented. Without the initial stress-kick bone cells did not release a significant amount of NO demonstrating an essential non-linearity to bone cell responses to stress and the possibility of stochastic resonance in bone cell mechanosensitivity. The rapid NO response of MC3T3-E1 cells to a small periodic fluid shear stress was increased with the addition of noise compared to the response to stress with only noise. This confirms the possibility of stochastic resonance enhancement of NO production by bone cells. Since NO regulate bone formation as well as resorption, our results suggest that noise enhances the activity of bone cells in driving the mechanical adaptation of bone.