Jack K. Hale
Georgia Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jack K. Hale.
Archive | 1977
Jack K. Hale
1 Linear differential difference equations.- 1.1 Differential and difference equations.- 1.2 Retarded differential difference equations.- 1.3 Exponential estimates of x(?, f).- 1.4 The characteristic equation.- 1.5 The fundamental solution.- 1.6 The variation-of-constants formula.- 1.7 Neutral differential difference equations.- 1.8 Supplementary remarks.- 2 Retarded functional differential equations : basic theory.- 2.1 Definition.- 2.2 Existence, uniqueness, and continuous dependence.- 2.3 Continuation of solutions.- 2.4 Differentiability of solutions.- 2.5 Backward continuation.- 2.6 Caratheodory conditions.- 2.7 Supplementary remarks.- 3 Properties of the solution map.- 3.1 Finite- or infinite-dimensional problem?.- 3.2 Equivalence classes of solutions.- 3.3 Exponential decrease for linear systems.- 3.4 Unique backward extensions.- 3.5 Range in ?n.- 3.6 Compactness and representation.- 3.7 Supplementary remarks.- 4 Autonomous and periodic processes.- 4.1 Processes.- 4.2 Invariance.- 4.3 Discrete systems-maximal compact invariant sets.- 4.4 Fixed points of discrete dissipative processes.- 4.5 Stability and maximal invariant sets in processes.- 4.6 Periodic trajectories of ?-periodic processes.- 4.7 Convergent systems.- 4.8 Supplementary remarks.- 5 Stability theory.- 5.1 Definitions.- 5.2 The method of Liapunov functional.- 5.3 Liapunov functional for autonomous systems.- 5.4 Razumikhin-type theorems.- 5.5 Supplementary remarks.- 6 General linear systems.- 6.1 Global existence and exponential estimates.- 6.2 Variation-of-constants formula.- 6.3 The formal adjoint equation.- 6.4 The true adjoint.- 6.5 Boundary-value problems.- 6.6 Stability and boundedness.- 6.7 Supplementary remarks.- 7 Linear autonomous equations.- 7.1 The semigroup and infinitesimal generator.- 7.2 Spectrum of the generator-decomposition of C.- 7.3 Decomposing C with the formal adjoint equation.- 7.4 Estimates on the complementary subspace.- 7.5 An example.- 7.6 The decomposition in the variation-of-constants formula.- 7.7 Supplementary remarks.- 8 Linear periodic systems.- 8.1 General theory.- 8.2 Decomposition.- 8.3 Supplementary remarks.- 9 Perturbed linear systems.- 9.1 Forced linear systems.- 9.2 Bounded, almost-periodic, and periodic solutions stable and unstable manifolds.- 9.3 Periodic solutions-critical cases.- 9.4 Averaging.- 9.5 Asymptotic behavior.- 9.6 Boundary-value problems.- 9.7 Supplementary remarks.- 10 Behavior near equilibrium and periodic orbits for autonomous equations.- 10.1 The saddle-point property near equilibrium.- 10.2 Nondegenerate periodic orbits.- 10.3 Hyperbolic periodic orbits.- 10.4 Supplementary remarks.- 11 Periodic solutions of autonomous equations.- 11.1 Hopf bifurcation.- 11.2 A periodicity theorem.- 11.3 Range of the period.- 11.4 The equation
Archive | 2010
Jack K. Hale
Siam Journal on Mathematical Analysis | 1989
Jack K. Hale; Paul Waltman
\dot x(t) = - \alpha x(t - 1)[1 + x(t)]
Journal of Mathematical Analysis and Applications | 1969
Jack K. Hale
Journal of Mathematical Analysis and Applications | 1985
Jack K. Hale; Ettore F. Infante; Fu-Shiang Peter Tsen
.- 11.5 The equation
Journal of Differential Equations | 1980
Shui-Nee Chow; Jack K. Hale; John Mallet-Paret
Journal of Dynamics and Differential Equations | 1989
G. Fusco; Jack K. Hale
\dot x(t) = - \alpha x(t - 1)[1 - {x^2}(t)]
Journal of Differential Equations | 1988
Jack K. Hale; Geneviève Raugel
Annali di Matematica Pura ed Applicata | 1970
Jack K. Hale; M. A. Cruz
.- 11.6 The equation
Mathematics of Computation | 1988
Jack K. Hale; Xiao-Biao Lin; Geneviève Raugel