Jack Lawler
Beth Israel Deaconess Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jack Lawler.
Cell | 1998
Susan E. Crawford; Veronica Stellmach; Joanne E. Murphy-Ullrich; Solange M. F. Ribeiro; Jack Lawler; Richard O. Hynes; Gregory P. Boivin; Noel P. Bouck
The activity of TGF-beta1 is regulated primarily extracellularly where the secreted latent form must be modified to expose the active molecule. Here we show that thrombospondin-1 is responsible for a significant proportion of the activation of TGF-beta1 in vivo. Histological abnormalities in young TGF-beta1 null and thrombospondin-1 null mice were strikingly similar in nine organ systems. Lung and pancreas pathologies similar to those observed in TGF-beta1 null animals could be induced in wild-type pups by systemic treatment with a peptide that blocked the activation of TGF-beta1 by thrombospondin-1. Although these organs produced little active TGF-beta1 in thrombospondin null mice, when pups were treated with a peptide derived from thrombospondin-1 that could activate TGF-beta1, active cytokine was detected in situ, and the lung and pancreatic abnormalities reverted toward wild type.
Cell | 2005
Karen S. Christopherson; Erik M. Ullian; C. Stokes; Christine E. Mullowney; Johannes W. Hell; Azin Agah; Jack Lawler; Deane F. Mosher; Paul Bornstein; Ben A. Barres
The establishment of neural circuitry requires vast numbers of synapses to be generated during a specific window of brain development, but it is not known why the developing mammalian brain has a much greater capacity to generate new synapses than the adult brain. Here we report that immature but not mature astrocytes express thrombospondins (TSPs)-1 and -2 and that these TSPs promote CNS synaptogenesis in vitro and in vivo. TSPs induce ultrastructurally normal synapses that are presynaptically active but postsynaptically silent and work in concert with other, as yet unidentified, astrocyte-derived signals to produce functional synapses. These studies identify TSPs as CNS synaptogenic proteins, provide evidence that astrocytes are important contributors to synaptogenesis within the developing CNS, and suggest that TSP-1 and -2 act as a permissive switch that times CNS synaptogenesis by enabling neuronal molecules to assemble into synapses within a specific window of CNS development.
Cell | 2009
Cagla Eroglu; Nicola J. Allen; Michael W. Susman; Nancy A. O'Rourke; Chan Young Park; Engin Özkan; Chandrani Chakraborty; Sara B. Mulinyawe; Douglas S. Annis; Andrew D. Huberman; Eric M. Green; Jack Lawler; Ricardo E. Dolmetsch; K. Christopher Garcia; Stephen J. Smith; Z. David Luo; Arnon Rosenthal; Deane F. Mosher; Ben A. Barres
Synapses are asymmetric cellular adhesions that are critical for nervous system development and function, but the mechanisms that induce their formation are not well understood. We have previously identified thrombospondin as an astrocyte-secreted protein that promotes central nervous system (CNS) synaptogenesis. Here, we identify the neuronal thrombospondin receptor involved in CNS synapse formation as alpha2delta-1, the receptor for the anti-epileptic and analgesic drug gabapentin. We show that the VWF-A domain of alpha2delta-1 interacts with the epidermal growth factor-like repeats common to all thrombospondins. alpha2delta-1 overexpression increases synaptogenesis in vitro and in vivo and is required postsynaptically for thrombospondin- and astrocyte-induced synapse formation in vitro. Gabapentin antagonizes thrombospondin binding to alpha2delta-1 and powerfully inhibits excitatory synapse formation in vitro and in vivo. These findings identify alpha2delta-1 as a receptor involved in excitatory synapse formation and suggest that gabapentin may function therapeutically by blocking new synapse formation.
Journal of Clinical Investigation | 1998
Jack Lawler; Mary E. Sunday; Valérie Thibert; Mark Duquette; Elizabeth L. George; Helen Rayburn; Richard O. Hynes
The thrombospondins are a family of extracellular calcium-binding proteins that modulate cellular phenotype. Thrombospondin-1 (TSP-1) reportedly regulates cellular attachment, proliferation, migration, and differentiation in vitro. To explore its function in vivo, we have disrupted the TSP-1 gene by homologous recombination in the mouse genome. Platelets from these mice are completely deficient in TSP-1 protein; however, thrombin-induced platelet aggregation is not diminished. TSP-1-deficient mice display a mild and variable lordotic curvature of the spine that is apparent from birth. These mice also display an increase in the number of circulating white blood cells, with monocytes and eosinophils having the largest percent increases. The brain, heart, kidney, spleen, stomach, intestines, aorta, and liver of TSP-1-deficient mice showed no major abnormalities. However, consistent with high levels of expression of TSP-1 in lung, we observe abnormalities in the lungs of mice that lack the protein. Although normal at birth, histopathological analysis of lungs from 4-wk-old TSP-1-deficient mice reveals extensive acute and organizing pneumonia, with neutrophils and macrophages. The macrophages stain for hemosiderin, indicating that diffuse alveolar hemorrhage is occurring. At later times, the number of neutrophils decreases and a striking increase in the number of hemosiderin-containing macrophages is observed associated with multiple-lineage epithelial hyperplasia and the deposition of collagen and elastin. A thickening and ruffling of the epithelium of the airways results from increasing cell proliferation in TSP-1-deficient mice. These results indicate that TSP-1 is involved in normal lung homeostasis.
Journal of Cellular and Molecular Medicine | 2002
Jack Lawler
Thrombospondin‐1 (TSP‐1) is a matricellular glycoprotein that influences cellular phenotype and the structure of the extracellular matrix. These effects are important components of the tissue remodeling that is associated with angiogenesis and neoplasia. The genetic mutations in oncogenes and tumor suppressor genes that occur within tumor cells are frequently associated with decreased expression of TSP‐1. However, the TSP‐1 that is produced by stromal fibroblasts, endothelial cells and immune cells suppresses tumor progression. TSP‐1 inhibits angiogenesis through direct effects on endothelial cell migration and survival and through indirect effects on growth factor mobilization. TSP‐1 that is present in the tumor microenvironment also acts to suppress tumor cell growth through activation of transforming growth factor β in those tumor cells that are responsive to TGFβ. In this review, the molecular basis for the role of TSP‐1 in the inhibition of tumor growth and angiogenesis is summarized.
Cell | 1989
Patricia Oquendo; Erika Hundt; Jack Lawler; Brian Seed
Erythrocytes infected with P. falciparum express knob-like adhesion structures that allow the infected cells to cling to the postcapilliary endothelium of characteristic host organs. At present, the mechanism of cytoadherence is not fully understood. While parasitized erythrocytes have been shown to specifically bind to the platelet/matrix molecule thrombospondin, adherence to suitable target cells can also be blocked by monoclonal antibody OKM5, which recognizes a surface molecule expressed by hematopoietic cells and endothelium. In apparent reconciliation of these findings, it has been reported that the OKM5 antigen (CD36) is a receptor for thrombospondin. Here we report that expression of a CD36 cDNA clone in COS cells supports cytoadherence of parasitized erythrocytes but does not support increased binding of purified human thrombospondin.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Rodriguez-Manzaneque Jc; Lane Tf; Ortega Ma; Richard O. Hynes; Jack Lawler; Iruela-Arispe Ml
Growth of tumors and metastasis are processes known to require neovascularization. To ascertain the participation of the endogenous angiogenic inhibitor thrombospondin-1 (TSP1) in tumor progression, we generated mammary tumor-prone mice that either lack, or specifically overexpress, TSP1 in the mammary gland. Tumor burden and vasculature were significantly increased in TSP1-deficient animals, and capillaries within the tumor appeared distended and sinusoidal. In contrast, TSP1 overexpressors showed delayed tumor growth or lacked frank tumor development (20% of animals); tumor capillaries showed reduced diameter and were less frequent. Interestingly, absence of TSP1 resulted in increased association of vascular endothelial growth factor (VEGF) with its receptor VEGFR2 and higher levels of active matrix metalloproteinase-9 (MMP9), a molecule previously shown to facilitate both angiogenesis and tumor invasion. In vitro, enzymatic activation of proMMP9 was suppressed by TSP1. Together these results argue for a protective role of endogenous inhibitors of angiogenesis in tumor growth and implicate TSP1 in the in vivo regulation of metalloproteinase-9 activation and VEGF signaling.
Current Opinion in Cell Biology | 2000
Jack Lawler
Considerable progress has been made towards understanding the function of thrombospondin-1 and-2. The description of the phenotype of mice with thrombospondin-1 and-2 knocked-out supports in vitro biochemical and cell-biological data and has opened new avenues of research. Recently, our understanding of the roles of thrombospondins in the activation of TGFbeta, inhibition of angiogenesis and the initiation of signal transduction has advanced.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Guido Bocci; Giulio Francia; Shan Man; Jack Lawler; Robert S. Kerbel
Chemotherapeutic drugs chronically administered to tumor-bearing mice, using a frequent schedule at doses substantially lower than the maximum tolerated dose (MTD) (i.e., metronomic dosing), can cause sustained and potent antiangiogenic effects by targeting the endothelial cells of newly growing tumor blood vessels. These effects appear to occur in the absence of an increase in the severity of side effects caused by destruction of other cell types normally sensitive to MTD chemotherapy, suggesting a marked and selective sensitivity of activated endothelial cells, the basis of which is unknown. Here we report that protracted exposure of endothelial cells in vitro to low concentrations of several different anticancer agents, including microtubule inhibitors and an alkylating agent, caused marked induction of gene and protein expression of TSP-1, a potent and endothelial-specific inhibitor of angiogenesis. Increases in circulating TSP-1 were also detected in the plasma of human tumor-bearing severe combined immunodeficient mice treated with metronomic low-dose cyclophosphamide. Most importantly, the antiangiogenic and antitumor effects of low-dose continuous cyclophosphamide were lost in TSP-1-null C57BL/6 mice, whereas, in contrast, these effects were retained by using a MTD schedule of the same drug. Taken together, the results implicate TSP-1 as a secondary mediator of the antiangiogenic effects of at least some low-dose metronomic chemotherapy regimens.
Matrix Biology | 2000
Hui Chen; Mary E. Herndon; Jack Lawler
Thrombospondin-1 (TSP-1) is a matricellular protein that regulates cellular phenotype during tissue genesis and repair. It acts as a molecular facilitator by bringing together cytokines, growth factors, matrix components, membrane receptors and extracellular proteases. TSP-1 binds to a wide variety of integrin and non-integrin cell surface receptors. The binding sites for these receptors on TSP-1 are dispersed throughout the molecule, with most domains binding multiple receptors. In some cases, TSP-1 binds to multiple receptors concurrently, and recent data indicate that there is cross-talk between the receptor systems. Thus, TSP-1 may function to direct the clustering of receptors to specialized domains for adhesion and signal transduction.