Jack Mottahedeh
University of California, Los Angeles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jack Mottahedeh.
Cell Stem Cell | 2011
Janel Le Belle; Nicolas M. Orozco; Andres A. Paucar; Jonathan P. Saxe; Jack Mottahedeh; April D. Pyle; Hong Wu; Harley I. Kornblum
The majority of research on reactive oxygen species (ROS) has focused on their cellular toxicities. Stem cells generally have been thought to maintain low levels of ROS as a protection against these processes. However, recent studies suggest that ROS can also play roles as second messengers, activating normal cellular processes. Here, we investigated ROS function in primary brain-derived neural progenitors. Somewhat surprisingly, we found that proliferative, self-renewing multipotent neural progenitors with the phenotypic characteristics of neural stem cells (NSC) maintained a high ROS status and were highly responsive to ROS stimulation. ROS-mediated enhancements in self-renewal and neurogenesis were dependent on PI3K/Akt signaling. Pharmacological or genetic manipulations that diminished cellular ROS levels also interfered with normal NSC and/or multipotent progenitor function both in vitro and in vivo. This study has identified a redox-mediated regulatory mechanism of NSC function that may have significant implications for brain injury, disease, and repair.
Science | 2014
David Nathanson; Beatrice Gini; Jack Mottahedeh; Koppany Visnyei; Tomoyuki Koga; German Gomez; Ascia Eskin; Kiwook Hwang; Jun Wang; Kenta Masui; Andres A. Paucar; Huijun Yang; Minori Ohashi; Shaojun Zhu; Jill Wykosky; Rachel Reed; Stanley F. Nelson; Timothy F. Cloughesy; C. David James; P. Nagesh Rao; Harley I. Kornblum; James R. Heath; Webster K. Cavenee; Frank B. Furnari; Paul S. Mischel
Playing Hide and Seek Targeted cancer therapies have shown promising results in patients, but few of these drugs provide long-term benefits because tumor cells rapidly develop drug resistance. Nathanson et al. (p. 72, published online 5 December) show that glioblastoma cells can become resistant to erlotinib, an epidermal growth factor receptor (EGFR)–targeted drug, by eliminating extrachromosomal copies of the mutant EGFR gene. After a period of drug withdrawal, the mutant EGFR gene reappears on extrachromosomal DNA and the tumor cells become resensitized. The discovery that cancer cells can evade drug therapy by this “hide and seek” mechanism may help to optimize the dosing schedule of erlotinib in glioblastoma patients. Tumor cells become resistant to targeted therapies by eliminating the gene encoding the drug target from extrachromosomal DNA. Intratumoral heterogeneity contributes to cancer drug resistance, but the underlying mechanisms are not understood. Single-cell analyses of patient-derived models and clinical samples from glioblastoma patients treated with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) demonstrate that tumor cells reversibly up-regulate or suppress mutant EGFR expression, conferring distinct cellular phenotypes to reach an optimal equilibrium for growth. Resistance to EGFR TKIs is shown to occur by elimination of mutant EGFR from extrachromosomal DNA. After drug withdrawal, reemergence of clonal EGFR mutations on extrachromosomal DNA follows. These results indicate a highly specific, dynamic, and adaptive route by which cancers can evade therapies that target oncogenes maintained on extrachromosomal DNA.
Cancer Research | 2010
Jing Sun; Michael Masterman-Smith; Nicholas A. J. Graham; Jing Jiao; Jack Mottahedeh; Dan R. Laks; Minori Ohashi; Jason DeJesus; Ken-ichiro Kamei; Ki-Bum Lee; Hao Wang; Yi-Tsung Lu; Shuang Hou; Keyu Li; Max Liu; Nangang Zhang; Shutao Wang; Brigitte Angénieux; Eric R. Samuels; Jun Park; Dirk Williams; Vera Konkankit; David Nathanson; R. Michael van Dam; Michael E. Phelps; Hong Wu; Linda M. Liau; Paul S. Mischel; Jorge A. Lazareff; Harley I. Kornblum
The clinical practice of oncology is being transformed by molecular diagnostics that will enable predictive and personalized medicine. Current technologies for quantitation of the cancer proteome are either qualitative (e.g., immunohistochemistry) or require large sample sizes (e.g., flow cytometry). Here, we report a microfluidic platform-microfluidic image cytometry (MIC)-capable of quantitative, single-cell proteomic analysis of multiple signaling molecules using only 1,000 to 2,800 cells. Using cultured cell lines, we show simultaneous measurement of four critical signaling proteins (EGFR, PTEN, phospho-Akt, and phospho-S6) within the oncogenic phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway. To show the clinical application of the MIC platform to solid tumors, we analyzed a panel of 19 human brain tumor biopsies, including glioblastomas. Our MIC measurements were validated by clinical immunohistochemistry and confirmed the striking intertumoral and intratumoral heterogeneity characteristic of glioblastoma. To interpret the multiparameter, single-cell MIC measurements, we adapted bioinformatic methods including self-organizing maps that stratify patients into clusters that predict tumor progression and patient survival. Together with bioinformatic analysis, the MIC platform represents a robust, enabling in vitro molecular diagnostic technology for systems pathology analysis and personalized medicine.
Molecular Cancer Therapeutics | 2011
Koppany Visnyei; Hideyuki Onodera; Robert Damoiseaux; Kuniyasu Saigusa; Syuzanna Petrosyan; David De Vries; Denise Ferrari; Jonathan P. Saxe; Eduard H. Panosyan; Michael Masterman-Smith; Jack Mottahedeh; Kenneth A. Bradley; Jing Huang; Chiara Sabatti; Ichiro Nakano; Harley I. Kornblum
Glioblastoma (GBM) is among the most lethal of all cancers. GBM consist of a heterogeneous population of tumor cells among which a tumor-initiating and treatment-resistant subpopulation, here termed GBM stem cells, have been identified as primary therapeutic targets. Here, we describe a high-throughput small molecule screening approach that enables the identification and characterization of chemical compounds that are effective against GBM stem cells. The paradigm uses a tissue culture model to enrich for GBM stem cells derived from human GBM resections and combines a phenotype-based screen with gene target-specific screens for compound identification. We used 31,624 small molecules from 7 chemical libraries that we characterized and ranked based on their effect on a panel of GBM stem cell-enriched cultures and their effect on the expression of a module of genes whose expression negatively correlates with clinical outcome: MELK, ASPM, TOP2A, and FOXM1b. Of the 11 compounds meeting criteria for exerting differential effects across cell types used, 4 compounds showed selectivity by inhibiting multiple GBM stem cells-enriched cultures compared with nonenriched cultures: emetine, n-arachidonoyl dopamine, n-oleoyldopamine (OLDA), and n-palmitoyl dopamine. ChemBridge compounds #5560509 and #5256360 inhibited the expression of the 4 mitotic module genes. OLDA, emetine, and compounds #5560509 and #5256360 were chosen for more detailed study and inhibited GBM stem cells in self-renewal assays in vitro and in a xenograft model in vivo. These studies show that our screening strategy provides potential candidates and a blueprint for lead compound identification in larger scale screens or screens involving other cancer types. Mol Cancer Ther; 10(10); 1818–28. ©2011 AACR.
Journal of the National Cancer Institute | 2012
Arthur P. Chou; Reshmi Chowdhury; Sichen Li; Weidong Chen; Andrew Kim; David Piccioni; Julia Selfridge; Reema R. Mody; Stephen Chang; Shadi Lalezari; Jeffrey Lin; Desiree E. Sanchez; Ryan W. Wilson; Matthew C. Garrett; Bret Harry; Jack Mottahedeh; Phioanh L. Nghiemphu; Harley I. Kornblum; Paul S. Mischel; Robert M. Prins; William H. Yong; Timothy F. Cloughesy; Stanley F. Nelson; Linda M. Liau; Albert Lai
BACKGROUND Mutations in isocitrate dehydrogenase 1 (IDH1) and associated CpG island hypermethylation represent early events in the development of low-grade gliomas and secondary glioblastomas. To identify candidate tumor suppressor genes whose promoter methylation may contribute to gliomagenesis, we compared methylation profiles of IDH1 mutant (MUT) and IDH1 wild-type (WT) tumors using massively parallel reduced representation bisulfite sequencing. METHODS Reduced representation bisulfite sequencing was performed on ten pathologically matched WT and MUT glioma samples and compared with data from a methylation-sensitive restriction enzyme technique and data from The Cancer Genome Atlas (TCGA). Methylation in the gene retinol-binding protein 1 (RBP1) was identified in IDH1 mutant tumors and further analyzed with primer-based bisulfite sequencing. Correlation between IDH1/IDH2 mutation status and RBP1 methylation was evaluated with Spearman correlation. Survival data were collected retrospectively and analyzed with Kaplan-Meier and Cox proportional hazards analysis. All statistical tests were two-sided. RESULTS Methylome analysis identified coordinated CpG island hypermethylation in IDH1 MUT gliomas, consistent with previous reports. RBP1, important in retinoic acid metabolism, was found to be hypermethylated in 76 of 79 IDH1 MUT, 3 of 3 IDH2 MUT, and 0 of 116 IDH1/IDH2 WT tumors. IDH1/IDH2 mutation was highly correlated with RBP1 hypermethylation (n = 198; Spearman R = 0.94, 95% confidence interval = 0.92 to 0.95, P < .001). The Cancer Genome Atlas showed IDH1 MUT tumors (n = 23) to be RBP1-hypermethylated with decreased RBP1 expression compared with WT tumors (n = 124). Among patients with primary glioblastoma, patients with RBP1-unmethylated tumors (n = 102) had decreased median overall survival compared with patients with RBP1-methylated tumors (n = 22) (20.3 months vs 36.8 months, respectively; hazard ratio of death = 2.48, 95% confidence interval = 1.30 to 4.75, P = .006). CONCLUSION RBP1 promoter hypermethylation is found in nearly all IDH1 and IDH2 mutant gliomas and is associated with improved patient survival. Because RBP1 is involved in retinoic acid synthesis, our results suggest that dysregulation of retinoic acid metabolism may contribute to glioma formation along the IDH1/IDH2-mutant pathway.
Pediatric Blood & Cancer | 2010
Eduard H. Panosyan; Dan R. Laks; Michael Masterman-Smith; Jack Mottahedeh; William H. Yong; Timothy F. Cloughesy; Jorge A. Lazareff; Paul S. Mischel; Theodore B. Moore; Harley I. Kornblum
Cultured brain tumors can form neurospheres harboring tumorigenic cells with self renewal and differentiation capacities. Renewable neurosphere formation has clinical predictive value in adult malignant gliomas, yet its prognostic role for pediatric brain tumors is unknown.
Cell Reports | 2016
Xian Liu; Tristan Grogan; Haley Hieronymus; Takao Hashimoto; Jack Mottahedeh; Donghui Cheng; Lijun Zhang; Kevin Huang; Tanya Stoyanova; Jung Wook Park; Ruzanna O. Shkhyan; Behdokht Nowroozizadeh; Matthew Rettig; Charles L. Sawyers; David Elashoff; Steve Horvath; Jiaoti Huang; Owen N. Witte; Andrew S. Goldstein
SUMMARY Inflammation is a risk factor for prostate cancer, but the mechanisms by which inflammation increases that risk are poorly understood. Here, we demonstrate that low expression of CD38 identifies a progenitor-like subset of luminal cells in the human prostate. CD38lo luminal cells are enriched in glands adjacent to inflammatory cells and exhibit epithelial nuclear factor κB (NF-κB) signaling. In response to oncogenic transformation, CD38lo luminal cells can initiate human prostate cancer in an in vivo tissue-regeneration assay. Finally, the CD38lo luminal phenotype and gene signature are associated with disease progression and poor outcome in prostate cancer. Our results suggest that prostate inflammation expands the pool of progenitor-like target cells susceptible to tumorigenesis.
Neuro-oncology | 2016
Dan R. Laks; Thomas J. Crisman; Michelle Y. S. Shih; Jack Mottahedeh; Fuying Gao; Jantzen Sperry; Matthew C. Garrett; William H. Yong; Timothy F. Cloughesy; Linda M. Liau; Albert Lai; Giovanni Coppola; Harley I. Kornblum
BACKGROUND Gliomasphere cultures are widely utilized for the study of glioblastoma (GBM). However, this model system is not well characterized, and the utility of current classification methods is not clear. METHODS We used 71 gliomasphere cultures from 68 individuals. Using gene expression-based classification, we performed unsupervised clustering and associated gene expression with gliomasphere phenotypes and patient survival. RESULTS Some aspects of the gene expression-based classification method were robust because the gliomasphere cultures retained their classification over many passages, and IDH1 mutant gliomaspheres were all proneural. While gene expression of a subset of gliomasphere cultures was more like the parent tumor than any other tumor, gliomaspheres did not always harbor the same classification as their parent tumor. Classification was not associated with whether a sphere culture was derived from primary or recurrent GBM or associated with the presence of EGFR amplification or rearrangement. Unsupervised clustering of gliomasphere gene expression distinguished 2 general categories (mesenchymal and nonmesenchymal), while multidimensional scaling distinguished 3 main groups and a fourth minor group. Unbiased approaches revealed that PI3Kinase, protein kinase A, mTOR, ERK, Integrin, and beta-catenin pathways were associated with in vitro measures of proliferation and sphere formation. Associating gene expression with gliomasphere phenotypes and patient outcome, we identified genes not previously associated with GBM: PTGR1, which suppresses proliferation, and EFEMP2 and LGALS8, which promote cell proliferation. CONCLUSIONS This comprehensive assessment reveals advantages and limitations of using gliomaspheres to model GBM biology, and provides a novel strategy for selecting genes for future study.
Cancer and Metabolism | 2018
Matthew C. Garrett; Jantzen Sperry; Daniel Braas; Weihong Yan; Thuc M. Le; Jack Mottahedeh; Kirsten Ludwig; Ascia Eskin; Yue Qin; Rachelle Levy; Joshua J. Breunig; Frank Pajonk; Thomas G. Graeber; Caius G. Radu; Heather R. Christofk; Robert M. Prins; Albert Lai; Linda M. Liau; Giovanni Coppola; Harley I. Kornblum
BackgroundThere is considerable interest in defining the metabolic abnormalities of IDH mutant tumors to exploit for therapy. While most studies have attempted to discern function by using cell lines transduced with exogenous IDH mutant enzyme, in this study, we perform unbiased metabolomics to discover metabolic differences between a cohort of patient-derived IDH1 mutant and IDH wildtype gliomaspheres.MethodsUsing both our own microarray and the TCGA datasets, we performed KEGG analysis to define pathways differentially enriched in IDH1 mutant and IDH wildtype cells and tumors. Liquid chromatography coupled to mass spectrometry analysis with labeled glucose and deoxycytidine tracers was used to determine differences in overall cellular metabolism and nucleotide synthesis. Radiation-induced DNA damage and repair capacity was assessed using a comet assay. Differences between endogenous IDH1 mutant metabolism and that of IDH wildtype cells transduced with the IDH1 (R132H) mutation were also investigated.ResultsOur KEGG analysis revealed that IDH wildtype cells were enriched for pathways involved in de novo nucleotide synthesis, while IDH1 mutant cells were enriched for pathways involved in DNA repair. LC-MS analysis with fully labeled 13C-glucose revealed distinct labeling patterns between IDH1 mutant and wildtype cells. Additional LC-MS tracing experiments confirmed increased de novo nucleotide synthesis in IDH wildtype cells relative to IDH1 mutant cells. Endogenous IDH1 mutant cultures incurred less DNA damage than IDH wildtype cultures and sustained better overall growth following X-ray radiation. Overexpression of mutant IDH1 in a wildtype line did not reproduce the range of metabolic differences observed in lines expressing endogenous mutations, but resulted in depletion of glutamine and TCA cycle intermediates, an increase in DNA damage following radiation, and a rise in intracellular ROS.ConclusionsThese results demonstrate that IDH1 mutant and IDH wildtype cells are easily distinguishable metabolically by analyzing expression profiles and glucose consumption. Our results also highlight important differences in nucleotide synthesis utilization and DNA repair capacity that could be exploited for therapy. Altogether, this study demonstrates that IDH1 mutant gliomas are a distinct subclass of glioma with a less malignant, but also therapy-resistant, metabolic profile that will likely require distinct modes of therapy.
Cancer and Metabolism | 2018
Jack Mottahedeh; Michael C. Haffner; Tristan Grogan; Takao Hashimoto; Preston D. Crowell; Himisha Beltran; Andrea Sboner; Rohan Bareja; David Esopi; William B. Isaacs; Srinivasan Yegnasubramanian; Matthew Rettig; David Elashoff; Elizabeth A. Platz; Angelo M. De Marzo; Michael A. Teitell; Andrew S. Goldstein
BackgroundCancer cell metabolism requires sustained pools of intracellular nicotinamide adenine dinucleotide (NAD+) which is maintained by a balance of NAD+ hydrolase activity and NAD+ salvage activity. We recently reported that human prostate cancer can be initiated following oncogene expression in progenitor-like luminal cells marked by low expression of the NAD+-consuming enzyme CD38. CD38 expression is reduced in prostate cancer compared to benign prostate, suggesting that tumor cells may reduce CD38 expression in order to enhance pools of NAD+. However, little is known about how CD38 expression is repressed in advanced prostate cancer and whether CD38 plays a role in regulating NAD+ levels in prostate epithelial cells.MethodsCD38 expression, its association with recurrence after prostatectomy for clinically localized prostate cancer, and DNA methylation of the CD38 promoter were evaluated in human prostate tissues representing various stages of disease progression. CD38 was inducibly over-expressed in benign and malignant human prostate cell lines in order to determine the effects on cell proliferation and levels of NAD+ and NADH. NAD+ and NADH were also measured in urogenital tissues from wild-type and CD38 knockout mice.ResultsCD38 mRNA expression was reduced in metastatic castration-resistant prostate cancer compared to localized prostate cancer. In a large cohort of men undergoing radical prostatectomy, CD38 protein expression was inversely correlated with recurrence. We identified methylation of the CD38 promoter in primary and metastatic prostate cancer. Over-expression of wild-type CD38, but not an NAD+ hydrolase-deficient mutant, depleted extracellular NAD+ levels in benign and malignant prostate cell lines. However, expression of CD38 did not significantly alter intracellular NAD+ levels in human prostate cell lines grown in vitro and in urogenital tissues isolated from wild-type and CD38 knockout mice.ConclusionsCD38 protein expression in prostate cancer is associated with risk of recurrence. Methylation results suggest that CD38 is epigenetically regulated in localized and metastatic prostate cancer tissues. Our study provides support for CD38 as a regulator of extracellular, but not intracellular, NAD+ in epithelial cells. These findings suggest that repression of CD38 by methylation may serve to increase the availability of extracellular NAD+ in prostate cancer tissues.