Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jack P. Antel is active.

Publication


Featured researches published by Jack P. Antel.


The New England Journal of Medicine | 2008

B-Cell Depletion with Rituximab in Relapsing–Remitting Multiple Sclerosis

Stephen L. Hauser; Emmanuelle Waubant; Douglas L. Arnold; Timothy Vollmer; Jack P. Antel; Robert J. Fox; Amit Bar-Or; Michael Panzara; Neena Sarkar; Sunil Agarwal; Annette Langer-Gould; Craig H. Smith

BACKGROUND There is increasing evidence that B lymphocytes are involved in the pathogenesis of multiple sclerosis, and they may be a therapeutic target. Rituximab, a monoclonal antibody, selectively targets and depletes CD20+ B lymphocytes. METHODS In a phase 2, double-blind, 48-week trial involving 104 patients with relapsing-remitting multiple sclerosis, we assigned 69 patients to receive 1000 mg of intravenous rituximab and 35 patients to receive placebo on days 1 and 15. The primary end point was the total count of gadolinium-enhancing lesions detected on magnetic resonance imaging scans of the brain at weeks 12, 16, 20, and 24. Clinical outcomes included safety, the proportion of patients who had relapses, and the annualized rate of relapse. RESULTS As compared with patients who received placebo, patients who received rituximab had reduced counts of total gadolinium-enhancing lesions at weeks 12, 16, 20, and 24 (P<0.001) and of total new gadolinium-enhancing lesions over the same period (P<0.001); these results were sustained for 48 weeks (P<0.001). As compared with patients in the placebo group, the proportion of patients in the rituximab group with relapses was significantly reduced at week 24 (14.5% vs. 34.3%, P=0.02) and week 48 (20.3% vs. 40.0%, P=0.04). More patients in the rituximab group than in the placebo group had adverse events within 24 hours after the first infusion, most of which were mild-to-moderate events; after the second infusion, the numbers of events were similar in the two groups. CONCLUSIONS A single course of rituximab reduced inflammatory brain lesions and clinical relapses for 48 weeks. This trial was not designed to assess long-term safety or to detect uncommon adverse events. The data provide evidence of B-cell involvement in the pathophysiology of relapsing-remitting multiple sclerosis. (ClinicalTrials.gov number, NCT00097188 [ClinicalTrials.gov].).


Nature Neuroscience | 2014

Identification of a unique TGF-β–dependent molecular and functional signature in microglia

Oleg Butovsky; Mark P. Jedrychowski; Craig S. Moore; Ron Cialic; Amanda J. Lanser; Galina Gabriely; Thomas Koeglsperger; Ben Dake; Pauline M. Wu; Camille E. Doykan; Zain Fanek; LiPing Liu; Zhuoxun Chen; Jeffrey D. Rothstein; Richard M. Ransohoff; Steven P. Gygi; Jack P. Antel; Howard L. Weiner

Microglia are myeloid cells of the CNS that participate both in normal CNS function and in disease. We investigated the molecular signature of microglia and identified 239 genes and 8 microRNAs that were uniquely or highly expressed in microglia versus myeloid and other immune cells. Of the 239 genes, 106 were enriched in microglia as compared with astrocytes, oligodendrocytes and neurons. This microglia signature was not observed in microglial lines or in monocytes recruited to the CNS, and was also observed in human microglia. We found that TGF-β was required for the in vitro development of microglia that express the microglial molecular signature characteristic of adult microglia and that microglia were absent in the CNS of TGF-β1–deficient mice. Our results identify a unique microglial signature that is dependent on TGF-β signaling and provide insights into microglial biology and the possibility of targeting microglia for the treatment of CNS disease.


Nature Medicine | 2000

Encephalitogenic potential of the myelin basic protein peptide (amino acids 83-99) in multiple sclerosis: Results of a phase II clinical trial with an altered peptide ligand

Bibiana Bielekova; Bonnie Goodwin; Nancy Richert; Irene Cortese; Takayuki Kondo; Ghazaleh Afshar; Bruno Gran; Joan M. Eaton; Jack P. Antel; Joseph A. Frank; Henry F. McFarland; Roland Martin

Myelin-specific T lymphocytes are considered essential in the pathogenesis of multiple sclerosis. The myelin basic protein peptide (a.a. 83–99) represents one candidate antigen; therefore, it was chosen to design an altered peptide ligand, CGP77116, for specific immunotherapy of multiple sclerosis. A magnetic resonance imaging-controlled phase II clinical trial with this altered peptide ligand documented that it was poorly tolerated at the dose tested, and the trial had therefore to be halted. Improvement or worsening of clinical or magnetic resonance imaging parameters could not be demonstrated in this small group of individuals because of the short treatment duration. Three patients developed exacerbations of multiple sclerosis, and in two this could be linked to altered peptide ligand treatment by immunological studies demonstrating the encephalitogenic potential of the myelin basic protein peptide (a.a. 83–99) in a subgroup of patients. These data raise important considerations for the use of specific immunotherapies in general.


Journal of Immunology | 2005

TLR Signaling Tailors Innate Immune Responses in Human Microglia and Astrocytes

Carolyn Jack; Nathalie Arbour; Joshua Manusow; Vivianne Montgrain; Manon Blain; Ellie McCrea; Aaron Shapiro; Jack P. Antel

The specific signals mediating the activation of microglia and astrocytes as a prelude to, or consequence of, CNS inflammation continue to be defined. We investigated TLRs as novel receptors mediating innate immune responses in human glial cells. We find that microglia express mRNA for TLRs 1–9, whereas astrocytes express robust TLR3, low-level TLR 1, 4, 5, and 9, and rare-to-undetectable TLR 2, 6, 7, 8, and 10 mRNA (quantitative real-time PCR). We focused on TLRs 3 and 4, which can signal through both the MyD88-dependent and -independent pathways, and on the MyD88-restricted TLR2. By flow cytometry, we established that microglia strongly express cell surface TLR2; TLR3 is expressed at higher levels intracellularly. Astrocytes express both cell surface and intracellular TLR3. All three TLRs trigger microglial activation upon ligation. TLR3 signaling induces the strongest proinflammatory polarizing response, characterized by secretion of high levels of IL-12, TNF-α, IL-6, CXCL-10, and IL-10, and the expression of IFN-β. CXCL-10 and IL-10 secretion following TLR4 ligation are comparable to that of TLR3; however, other responses were lower or absent. TLR2-mediated responses are dominated by IL-6 and IL-10 secretion. Astrocytes respond to TLR3 ligation, producing IL-6, CXCL-10, and IFN-β, implicating these cells as contributors to proinflammatory responses. Initial TLR-mediated glial activation also regulates consequent TLR expression; while TLR2 and TLR3 are subject to positive feedback, TLR4 is down-regulated in microglia. Astrocytes up-regulate all three TLRs following TLR3 ligation. Our data indicate that activation of innate immune responses in the CNS is not homogeneous but rather tailored according to cell type and environmental signal.


Nature Medicine | 2000

Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo- controlled, randomized phase II trial

Ludwig Kappos; Giancarlo Comi; Hillel Panitch; Joel Oger; Jack P. Antel; Paul J. Conlon; Lawrence Steinman; Alexander Rae-Grant; John E. Castaldo; Nancy Eckert; Joseph B. Guarnaccia; Pamela Mills; Gary Johnson; Peter A. Calabresi; C. Pozzilli; S. Bastianello; Elisabetta Giugni; Tatiana Witjas; Patrick Cozzone; Jean Pelletier; Dieter Pöhlau; H. Przuntek; Volker Hoffmann; Christopher T. Bever; Eleanor Katz; M. Clanet; Isabelle Berry; David Brassat; Irene Brunet; Gilles Edan

In this ‘double-blind’, randomized, placebo-controlled phase II trial, we compared an altered peptide ligand of myelin basic protein with placebo, evaluating their safety and influence on magnetic resonance imaging in relapsing–remitting multiple sclerosis. A safety board suspended the trial because of hypersensitivity reactions in 9% of the patients. There were no increases in either clinical relapses or in new enhancing lesions in any patient, even those with hypersensitivity reactions. Secondary analysis of those patients completing the study showed that the volume and number of enhancing lesions were reduced at a dose of 5 mg. There was also a regulatory type 2 T helper-cell response to altered peptide ligand that cross-reacted with the native peptide.


Annals of Neurology | 2009

Rituximab in patients with primary progressive multiple sclerosis: Results of a randomized double-blind placebo-controlled multicenter trial†

Kathleen Hawker; Paul O'Connor; Mark S. Freedman; Peter A. Calabresi; Jack P. Antel; Jack H. Simon; Stephen L. Hauser; Emmanuelle Waubant; Timothy Vollmer; Hillel Panitch; Jiameng Zhang; Peter Chin; Craig H. Smith

Rituximab, a monoclonal antibody selectively depleting CD20+ B cells, has demonstrated efficacy in reducing disease activity in relapsing‐remitting multiple sclerosis (MS). We evaluated rituximab in adults with primary progressive MS (PPMS) through 96 weeks and safety through 122 weeks.


Brain | 2008

Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis.

T. Kuhlmann; Veronique E. Miron; Q. Cuo; C. Wegner; Jack P. Antel; W. Brück

Impaired function/differentiation of progenitor cells might provide an explanation for the limited remyelination observed in the majority of chronic multiple sclerosis lesions. Here, we establish that in the normal adult human CNS, the transcription factors Nkx2.2 and Olig2 are strongly expressed in progenitor cells while mature oligodendrocytes are characterized by low levels of Olig2 or Nkx2.2. In vitro studies confirmed the expression of Olig2 in oligodendroglial progenitor cells and mature oligodendrocytes while astrocytes, microglial cells and neurons were negative for Olig2. In early multiple sclerosis lesions, we found Olig2-positive progenitor cells throughout all lesion stages and in periplaque white matter (PPWM). The number of progenitors in PPWM was significantly increased compared with the white matter from controls. In chronic multiple sclerosis lesions progenitor cells were still present, however, in significantly lower numbers than in early multiple sclerosis lesions. A subpopulation of progenitor cells in early multiple sclerosis lesions and PPWM but not in control cases co-expressed NogoA, a marker of mature oligodendrocytes. The co-expression of these two markers suggested that these cells were maturing oligodendrocytes recently recruited from the progenitor pool. In contrast, in chronic multiple sclerosis lesions maturing progenitors were only rarely present. In summary, we provide evidence that a differentiation block of oligodendroglial progenitors is a major determinant of remyelination failure in chronic multiple sclerosis lesions.


Annals of Neurology | 2009

Intrathecal pathogenic anti–aquaporin-4 antibodies in early neuromyelitis optica†

Jeffrey L. Bennett; Chiwah Lam; Sudhakar Reddy Kalluri; Philippe Saikali; Katherine Bautista; Cecily Dupree; Magdalena J. Glogowska; David Case; Jack P. Antel; Gregory P. Owens; Donald H. Gilden; Stefan Nessler; Christine Stadelmann; Bernhard Hemmer

The serum of most neuromyelitis optica (NMO) patients contains autoantibodies (NMO‐IgGs) directed against the aquaporin‐4 (AQP4) water channel located on astrocyte foot processes in the perivessel and subpial areas of the brain. Our objectives were to determine the source of central nervous system (CNS) NMO‐IgGs and their role in disease pathogenesis.


Glia | 2000

Brain-immune connection : Immuno-regulatory properties of CNS-resident cells

Burkhard Becher; Alexandre Prat; Jack P. Antel

Even though the immune privileged status of the central nervous system (CNS) limits access of systemic immune cells through the blood brain barrier (BBB), an immune response can occur in this compartment with or without major breach of the BBB. In this review, we consider properties of resident cells of the CNS, that participate in regulating the neural antigen (Ag)‐directed immune responses implicated in autoimmune diseases such as multiple sclerosis (MS). Under such conditions, the CNS is usually viewed as the target or victim of the immune assault, because such immune responses are thought to be initiated and regulated within the systemic immune compartment. The CNS‐endogenous cells may themselves, however, initiate, regulate and sustain an immune response. We consider the immune regulatory functions within the CNS in terms of events occurring within the CNS parenchyma (microglia, astroglia) and at the vascular interface. These regulatory functions involve antigen presentation to T cells and polarization of the cytokine response of these cells. Such responses may contribute not only to the overall tissue injury in primary immune disorders but also in a wide range of traumatic, ischemic and degenerative processes. GLIA 29:293–304, 2000.


The New England Journal of Medicine | 1991

Linkage of a gene causing familial amyotrophic lateral sclerosis to chromosome 21 and evidence of genetic-locus heterogeneity

Teepu Siddique; Denise A. Figlewicz; Margaret A. Pericak-Vance; Jonathan L. Haines; Guy A. Rouleau; Anita J. Jeffers; Peter Sapp; Wu Yen Hung; J. L. Bebout; Diane McKenna-Yasek; Gang Deng; H. Robert Horvitz; James F. Gusella; Robert H. Brown; Allen D. Roses; Raymond P. Roos; David B. Williams; Donald W. Mulder; Paul C. Watkins; FaizurRahman Noore; Garth A. Nicholson; Rosalyn Reed; Benjamin Rix Brooks; Barry W. Festoff; Jack P. Antel; Rup Tandan; Theodore L. Munsat; Nigel G. Laing; John J. Halperin; Forbes H. Norris

BACKGROUND Amyotrophic lateral sclerosis is a progressive neurologic disorder that commonly results in paralysis and death. Despite more than a century of research, no cause of, cure for, or means of preventing this disorder has been found. In a minority of cases, it is familial and inherited as an autosomal dominant trait with age-dependent penetrance. In contrast to the sporadic form of amyotrophic lateral sclerosis, the familial form provides the opportunity to use molecular genetic techniques to localize an inherited defect. Furthermore, such studies have the potential to discover the basic molecular defect causing motor-neuron degeneration. METHODS AND RESULTS We evaluated 23 families with familial amyotrophic lateral sclerosis for linkage of the gene causing this disease to four DNA markers on the long arm of chromosome 21. Multipoint linkage analyses demonstrated linkage between the gene and these markers. The maximum lod score--5.03--was obtained 10 centimorgans distal (telomeric) to the DNA marker D21S58. There was a significant probability (P less than 0.0001) of genetic-locus heterogeneity in the families. CONCLUSIONS The localization of a gene causing familial amyotrophic lateral sclerosis provides a means of isolating this gene and studying its function. Insight gained from understanding the function of this gene may be applicable to the design of rational therapy for both the familial and sporadic forms of the disease.

Collaboration


Dive into the Jack P. Antel's collaboration.

Top Co-Authors

Avatar

Amit Bar-Or

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar

Craig S. Moore

Memorial University of Newfoundland

View shared research outputs
Top Co-Authors

Avatar

Alexandre Prat

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manon Blain

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar

Luke M. Healy

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar

Douglas L. Arnold

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Voon Wee Yong

Montreal Neurological Institute and Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge