Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jack Sunter is active.

Publication


Featured researches published by Jack Sunter.


Open Biology | 2015

A toolkit enabling efficient, scalable and reproducible gene tagging in trypanosomatids

Samuel Dean; Jack Sunter; Richard J. Wheeler; Ian M. Hodkinson; Eva Gluenz; Keith Gull

One of the first steps in understanding a proteins function is to determine its localization; however, the methods for localizing proteins in some systems have not kept pace with the developments in other fields, creating a bottleneck in the analysis of the large datasets that are generated in the post-genomic era. To address this, we developed tools for tagging proteins in trypanosomatids. We made a plasmid that, when coupled with long primer PCR, can be used to produce transgenes at their endogenous loci encoding proteins tagged at either terminus or within the protein coding sequence. This system can also be used to generate deletion mutants to investigate the function of different protein domains. We show that the length of homology required for successful integration precluded long primer PCR tagging in Leishmania mexicana. Hence, we developed plasmids and a fusion PCR approach to create gene tagging amplicons with sufficiently long homologous regions for targeted integration, suitable for use in trypanosomatids with less efficient homologous recombination than Trypanosoma brucei. Importantly, we have automated the primer design, developed universal PCR conditions and optimized the workflow to make this system reliable, efficient and scalable such that whole genome tagging is now an achievable goal.


Journal of Cell Science | 2015

A dynamic coordination of flagellum and cytoplasmic cytoskeleton assembly specifies cell morphogenesis in trypanosomes

Jack Sunter; Vladimir Varga; Samuel Dean; Keith Gull

Plasma membrane‐to‐plasma membrane connections are common features of eukaryotic cells, with cytoskeletal frameworks below the respective membranes underpinning these connections. A defining feature of Trypanosoma brucei is the lateral attachment of its single flagellum to the cell body, which is mediated by a cytoskeletal structure called the flagellum attachment zone (FAZ). The FAZ is a key morphogenetic structure. Disruption of FAZ assembly can lead to flagellum detachment and dramatic changes in cell shape. To understand this complex structure, the identity of more of its constituent proteins is required. Here, we have used both proteomics and bioinformatics to identify eight new FAZ proteins. Using inducible expression of FAZ proteins tagged with eYFP we demonstrate that the site of FAZ assembly is close to the flagellar pocket at the proximal end of the FAZ. This contrasts with the flagellum, which is assembled at its distal end; hence, these two interconnected cytoskeletal structures have distinct spatially separated assembly sites. This challenging result has many implications for understanding the process of cell morphogenesis and interpreting mutant phenotypes.


Journal of Cell Biology | 2014

Modulation of a cytoskeletal calpain-like protein induces major transitions in trypanosome morphology

Polly Hayes; Vladimir Varga; Sofia Olego-Fernandez; Jack Sunter; Michael L. Ginger; Keith Gull

Major changes in trypanosome cell form can be achieved by simple modulation of the calpain-like protein ClpGM6 via coordinated association and positioning of membrane and cytoskeletal components.


Trends in Parasitology | 2016

The Flagellum Attachment Zone: ‘The Cellular Ruler’ of Trypanosome Morphology

Jack Sunter; Keith Gull

A defining feature of Trypanosoma brucei cell shape is the lateral attachment of the flagellum to the cell body, mediated by the flagellum attachment zone (FAZ). The FAZ is a complex cytoskeletal structure that connects the flagellum skeleton through two membranes to the cytoskeleton. The FAZ acts as a ‘cellular ruler’ of morphology by regulating cell length and organelle position and is therefore critical for both cell division and life cycle differentiations. Here we provide an overview of the advances in our understanding of the composition, assembly, and function of the FAZ.


Trends in Parasitology | 2017

TrypTag.org: A Trypanosome Genome-wide Protein Localisation Resource

Samuel Dean; Jack Sunter; Richard J. Wheeler

TrypTag is a major resource which will contain the localisation of every protein encoded in the Trypanosoma brucei genome. Localisations of over 2000 proteins are already available via http://tryptag.org. This will be a transformative resource for enabling sophisticated analysis of conserved eukaryotic and parasite specific cell biology.


Royal Society Open Science | 2017

A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids.

Tom Beneke; Ross Madden; Laura Makin; Jessica Valli; Jack Sunter; Eva Gluenz

Clustered regularly interspaced short palindromic repeats (CRISPR), CRISPR-associated gene 9 (Cas9) genome editing is set to revolutionize genetic manipulation of pathogens, including kinetoplastids. CRISPR technology provides the opportunity to develop scalable methods for high-throughput production of mutant phenotypes. Here, we report development of a CRISPR-Cas9 toolkit that allows rapid tagging and gene knockout in diverse kinetoplastid species without requiring the user to perform any DNA cloning. We developed a new protocol for single-guide RNA (sgRNA) delivery using PCR-generated DNA templates which are transcribed in vivo by T7 RNA polymerase and an online resource (LeishGEdit.net) for automated primer design. We produced a set of plasmids that allows easy and scalable generation of DNA constructs for transfections in just a few hours. We show how these tools allow knock-in of fluorescent protein tags, modified biotin ligase BirA*, luciferase, HaloTag and small epitope tags, which can be fused to proteins at the N- or C-terminus, for functional studies of proteins and localization screening. These tools enabled generation of null mutants in a single round of transfection in promastigote form Leishmania major, Leishmania mexicana and bloodstream form Trypanosoma brucei; deleted genes were undetectable in non-clonal populations, enabling for the first time rapid and large-scale knockout screens.


Journal of Cell Science | 2015

Modulation of flagellum attachment zone protein FLAM3 and regulation of the cell shape in Trypanosoma brucei life cycle transitions.

Jack Sunter; Corinna Benz; Jane Andre; Sarah Whipple; Paul G. McKean; Keith Gull; Michael L. Ginger; Julius Lukeš

ABSTRACT The cell shape of Trypanosoma brucei is influenced by flagellum-to-cell-body attachment through a specialised structure – the flagellum attachment zone (FAZ). T. brucei exhibits numerous morphological forms during its life cycle and, at each stage, the FAZ length varies. We have analysed FLAM3, a large protein that localises to the FAZ region within the old and new flagellum. Ablation of FLAM3 expression causes a reduction in FAZ length; however, this has remarkably different consequences in the tsetse procyclic form versus the mammalian bloodstream form. In procyclic form cells FLAM3 RNAi results in the transition to an epimastigote-like shape, whereas in bloodstream form cells a severe cytokinesis defect associated with flagellum detachment is observed. Moreover, we demonstrate that the amount of FLAM3 and its localisation is dependent on ClpGM6 expression and vice versa. This evidence demonstrates that FAZ is a key regulator of trypanosome shape, with experimental perturbations being life cycle form dependent. An evolutionary cell biology explanation suggests that these differences are a reflection of the division process, the cytoskeleton and intrinsic structural plasticity of particular life cycle forms. Summary: Trypanosoma brucei FLAM3 is a flagellar FAZ protein. Its depletion leads to a reduction in FAZ length, which has different consequences depending on the life cycle stage of the parasite.


Journal of Cell Science | 2016

Flagellar pocket restructuring through the Leishmania life cycle involves a discrete flagellum attachment zone

Richard J. Wheeler; Jack Sunter; Keith Gull

ABSTRACT Leishmania promastigote parasites have a flagellum, which protrudes from the flagellar pocket at the cell anterior, yet, surprisingly, have homologs of many flagellum attachment zone (FAZ) proteins – proteins used in the related Trypanosoma species to laterally attach the flagellum to the cell body from the flagellar pocket to the cell posterior. Here, we use seven Leishmania mexicana cell lines that expressed eYFP fusions of FAZ protein homologs to show that the Leishmania flagellar pocket includes a FAZ structure. Electron tomography revealed a precisely defined 3D organisation for both the flagellar pocket and FAZ, with striking similarities to those of Trypanosoma brucei. Expression of two T. brucei FAZ proteins in L. mexicana showed that T. brucei FAZ proteins can assemble into the Leishmania FAZ structure. Leishmania therefore have a previously unrecognised FAZ structure, which we show undergoes major structural reorganisation in the transition from the promastigote (sandfly vector) to amastigote (in mammalian macrophages). Morphogenesis of the Leishmania flagellar pocket, a structure important for pathogenicity, is therefore intimately associated with a FAZ; a finding with implications for understanding shape changes involving component modules during evolution. Summary: Leishmania parasites have a highly structured flagellar pocket, including a structure homologous to the Trypanosoma brucei flagellum attachment zone, which undergoes structural adaptations in different life cycle stages.


Molecular and Biochemical Parasitology | 2016

A vanillic acid inducible expression system for Trypanosoma brucei

Jack Sunter

Graphical abstract


Journal of Visualized Experiments | 2016

High-throughput Gene Tagging in Trypanosoma brucei.

Philip Dyer; Samuel Dean; Jack Sunter

Improvements in mass spectrometry, sequencing and bioinformatics have generated large datasets of potentially interesting genes. Tagging these proteins can give insights into their function by determining their localization within the cell and enabling interaction partner identification. We recently published a fast and scalable method to generate Trypanosoma brucei cell lines that express a tagged protein from the endogenous locus. The method was based on a plasmid we generated that, when coupled with long primer PCR, can be used to modify a gene to encode a protein tagged at either terminus. This allows the tagging of dozens of trypanosome proteins in parallel, facilitating the large-scale validation of candidate genes of interest. This system can be used to tag proteins for localization (using a fluorescent protein, epitope tag or electron microscopy tag) or biochemistry (using tags for purification, such as the TAP (tandem affinity purification) tag). Here, we describe a protocol to perform the long primer PCR and the electroporation in 96-well plates, with the recovery and selection of transgenic trypanosomes occurring in 24-well plates. With this workflow, hundreds of proteins can be tagged in parallel; this is an order of magnitude improvement to our previous protocol and genome scale tagging is now possible.

Collaboration


Dive into the Jack Sunter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge