Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jack Z. Gougoutas is active.

Publication


Featured researches published by Jack Z. Gougoutas.


Bioorganic & Medicinal Chemistry Letters | 2008

Identification and optimization of a novel series of [2.2.1]-oxabicyclo imide-based androgen receptor antagonists

Mark E. Salvati; Aaron Balog; Weifang Shan; Richard Rampulla; Soren Giese; Tom Mitt; Joseph A. Furch; Gregory D. Vite; Ricardo M. Attar; Maria Jure-Kunkel; Jieping Geng; Cheryl A. Rizzo; Marco M. Gottardis; Stanley R. Krystek; Jack Z. Gougoutas; Michael A. Galella; Mary T. Obermeier; Aberra Fura; Gamini Chandrasena

A novel series of [2.2.1]-oxabicyclo imide-based compounds were identified as potent antagonists of the androgen receptor. Molecular modeling and iterative drug design were applied to optimize this series. The lead compound [3aS-(3aalpha,4beta,5beta,7beta,7aalpha)]-4-(octahydro-5-hydroxy-4,7-dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl)-2-iodobenzonitrile was shown to have potent in vivo efficacy after oral dosing in the CWR22 human prostate tumor xenograph model.


Journal of Medicinal Chemistry | 2009

N-Aryl-oxazolidin-2-imine Muscle Selective Androgen Receptor Modulators Enhance Potency through Pharmacophore Reorientation

Alexandra A. Nirschl; Yan Zou; Stanley R. Krystek; James C. Sutton; Ligaya M. Simpkins; John A. Lupisella; Joyce E. Kuhns; Ramakrishna Seethala; Rajasree Golla; Paul G. Sleph; Blake C. Beehler; Gary J. Grover; Donald Egan; Aberra Fura; Viral Vyas; Yi-Xin Li; John S. Sack; Kevin Kish; Yongmi An; James A. Bryson; Jack Z. Gougoutas; John D. Dimarco; Robert Zahler; Jacek Ostrowski; Lawrence G. Hamann

A novel selective androgen receptor modulator (SARM) scaffold was discovered as a byproduct obtained during synthesis of our earlier series of imidazolidin-2-ones. The resulting oxazolidin-2-imines are among the most potent SARMs known, with many analogues exhibiting sub-nM in vitro potency in binding and functional assays. Despite the potential for hydrolytic instability at gut pH, compounds of the present class showed good oral bioavailability and were highly active in a standard rodent pharmacological model.


Bioorganic & Medicinal Chemistry Letters | 2009

Urea based CCR3 antagonists employing a tetrahydro-1,3-oxazin-2-one spacer.

T. G. Murali Dhar; Guchen Yang; Paul Davies; Mary F. Malley; Jack Z. Gougoutas; Dauh-Rurng Wu; Joel C. Barrish; Percy H. Carter

Conformational restriction of open chain analogs with a more polar tetrahydro-1,3-oxazin-2-one spacer led to the identification of potent urea-based CCR3 antagonists that exhibited excellent selectivity over binding to CYP2D6. The in vitro binding and eosinophil shape change data are presented. Compound 19b exhibited similar selectivity and potency to our development candidate BMS-639623.


Bioorganic & Medicinal Chemistry Letters | 2013

Discovery of potent and selective nonsteroidal indazolyl amide glucocorticoid receptor agonists

James E. Sheppeck; John L. Gilmore; Hai-Yun Xiao; T. G. Murali Dhar; David S. Nirschl; Arthur M. Doweyko; Martin J. Corbett; Mary F. Malley; Jack Z. Gougoutas; Lorraine I. McKay; Mark D. Cunningham; Sium Habte; John H. Dodd; Steven G. Nadler; John E. Somerville; Joel C. Barrish

Modification of a phenolic lead structure based on lessons learned from increasing the potency of steroidal glucocorticoid agonists lead to the discovery of exceptionally potent, nonsteroidal, indazole GR agonists. SAR was developed to achieve good selectivity against other nuclear hormone receptors with the ultimate goal of achieving a dissociated GR agonist as measured by human in vitro assays. The specific interactions by which this class of compounds inhibits GR was elucidated by solving an X-ray co-crystal structure.


ACS Medicinal Chemistry Letters | 2015

Discovery of BMS-641988, a Novel Androgen Receptor Antagonist for the Treatment of Prostate Cancer

Aaron Balog; Richard Rampulla; Gregory Scott Martin; Stanley R. Krystek; Ricardo M. Attar; Janet Dell-John; John D. Dimarco; David J. Fairfax; Jack Z. Gougoutas; Christian L. Holst; Andrew Nation; Cheryl A. Rizzo; Lana M. Rossiter; Liang Schweizer; Weifang Shan; Steven H. Spergel; Thomas Spires; Georgia Cornelius; Marco M. Gottardis; George L. Trainor; Gregory D. Vite; Mark E. Salvati

BMS-641988 (23) is a novel, nonsteroidal androgen receptor antagonist designed for the treatment of prostate cancer. The compound has high binding affinity for the AR and acts as a functional antagonist in vitro. BMS-641988 is efficacious in multiple human prostate cancer xenograft models, including CWR22-BMSLD1 where it displays superior efficacy relative to bicalutamide. Based on its promising preclinical profile, BMS-641988 was selected for clinical development.


Inorganica Chimica Acta | 1991

An unexpected by-product obtained during the preparation of technetium(III) boronic acid adducts of dioximes. The single crystal structure of TcCl(DMG)2(BDI)BEt (DMG=dimethylglyoxime, BDI=butane-2, 3-dione imine-oxime)

Karen E. Linder; David P. Nowotnik; Mary F. Malley; Jack Z. Gougoutas; Adrian D. Nunn

Abstract An unusual Tc(III) boron-capped imine-oxime complex has been isolated from the reaction of 99TcCl3(CH3CN)(PPh3)2, dimethyl glyoxime (DMG) and ethyl boronic acid (EtB(OH)2). A single crystal X-ray structure analysis of this molecule 99TcCl(DMG)2(BDI)BEt (BDI=butane-2, 3-dione imine-oxime) shows it to be seven coordinate: TcClC14H25N6O5B, a=9.073(2), b=23.686(5), c=19.539(6) A; β=93.77(2)°, P21/n, Z=8. Its structure is very similar to that of previously reported Tc(III) complexes 99TcCl(dioxime)3BR, except that one dioxime ligand on the molecule has been reduced to an imineoxime.


Tetrahedron Letters | 2000

Studies towards understanding the mechanism of the unusual rearrangement of certain 5-propargyloxyindoles

John E. Macor; Oren D. Langer; Jack Z. Gougoutas; Mary F. Malley; Lyndon A. M. Cornelius

Abstract A mechanism of the rearrangement of 5-propargyloxyindoles is proposed and supported by the formation of a novel tetracyclic indole derivative 12 as the major product in the cyclization of 5-propargyloxytryptophol 10 .


European Journal of Pharmacology | 2011

Cannabinoid CB1 receptor ligand binding and function examined through mutagenesis studies of F200 and S383

Doree Sitkoff; Ning Lee; Bruce A. Ellsworth; Qi Huang; Liya Kang; RoseAnn Baska; Yanting Huang; Chongqing Sun; Annapurna Pendri; Mary F. Malley; Raymond P. Scaringe; Jack Z. Gougoutas; Patricia H. Reggio; William R. Ewing; Mary Ann Pelleymounter; Kenneth E. Carlson

The cannabinoid CB(1) G protein-coupled receptor has been shown to be a regulator of food consumption and has been studied extensively as a drug target for the treatment of obesity. To advance understanding of the receptors three-dimensional structure, we performed mutagenesis studies at human cannabinoid CB(1) receptor residues F200 and S383 and measured changes in activity and binding affinity of compounds from two recently discovered active chemotypes, arylsulfonamide agonists and tetrahydroquinoline-based inverse agonists, as well as literature compounds. Our results add support to previous findings that both agonists and inverse agonists show varied patterns of binding at the two mutated residue sites, suggesting multiple subsites for binding to the cannabinoid CB(1) receptor for both functional types of ligands. We additionally find that an F200L mutation in the receptor largely restores binding affinity to ligands and significantly decreases constitutive activity when compared to F200A, resulting in a receptor phenotype that is closer to the wild-type receptor. The results downplay the importance of aromatic stacking interactions at F200 and suggest that a bulky hydrophobic contact is largely sufficient to provide significant receptor function and binding affinity to cannabinoid CB(1) receptor ligands.


Bioorganic & Medicinal Chemistry | 1993

Conformationally constrained calcium channel blockers: novel mimics of 1-benzazepin-2-ones.

Joel C. Barrish; Steven H. Spergel; Suzanne Moreland; Gary J. Grover; S.Anders Hedberg; Andrew T. Pudzianowski; Jack Z. Gougoutas; Mary F. Malley

In order to test a hypothesis that the seven-membered ring of the benzothiazepinone (diltiazem) and benzazepinone calcium channel blockers serves primarily to orient two critical pharmacophores in space, a series of novel, conformationally constrained bicyclo[2.2.2]octyl amines 3 which severely restrict the relative orientations available to the amine and methoxyphenyl groups was prepared. All compounds which positioned the pharmacophores on the same face of the molecule demonstrated vasorelaxant activity and affinity for the diltiazem receptor equal to or greater than racemic diltiazem 1 or the corresponding benzazepione 2. In addition, compound 3d was equipotent to (+)-diltiazem in its ability to reduce ischemic/reperfusion injury in an in vitro model of myocardial ischemia. However, 3d is significantly less cardiodepressive at an equivalent antiischemic dose. Therefore, the original receptor binding hypothesis led to the design and synthesis of novel calcium channel blockers with unique biological properties.


Carbohydrate Research | 2002

Confirmation of the structure of tetra-O-(tert-butyldimethylsilyl)-D-glucono-1,4-lactone formed by silylation of D-glucono-1,5-lactone.

Janak Singh; John D. Dimarco; Thomas P. Kissick; Prashant P. Deshpande; Jack Z. Gougoutas

The structure of tetra-O-(tert-butyldimethylsilyl)-D-glucono-1,4-lactone made by the silylation of D-glucono-1,5-lactone has been confirmed by single-crystal X-ray analysis.

Collaboration


Dive into the Jack Z. Gougoutas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janak Singh

Loyola University New Orleans

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge