Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jackelyn Valle is active.

Publication


Featured researches published by Jackelyn Valle.


European Heart Journal | 2016

Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction.

Romain Gallet; James Dawkins; Jackelyn Valle; Eli Simsolo; Geoffrey de Couto; Ryan Middleton; Eleni Tseliou; Daniel Luthringer; Michelle Kreke; Rachel R. Smith; Linda Marbán; Bijan Ghaleh; Eduardo Marbán

Aims Naturally secreted nanovesicles known as exosomes are required for the regenerative effects of cardiosphere-derived cells (CDCs), and exosomes mimic the benefits of CDCs in rodents. Nevertheless, exosomes have not been studied in a translationally realistic large-animal model. We sought to optimize delivery and assess the efficacy of CDC-secreted exosomes in pig models of acute (AMI) and convalescent myocardial infarction (CMI). Methods and results In AMI, pigs received human CDC exosomes (or vehicle) by intracoronary (IC) or open-chest intramyocardial (IM) delivery 30 min after reperfusion. No-reflow area and infarct size (IS) were assessed histologically at 48 h. Intracoronary exosomes were ineffective, but IM exosomes decreased IS from 80 ± 5% to 61 ± 12% (P= 0.001) and preserved left ventricular ejection fraction (LVEF). In a randomized placebo-controlled study of CMI, pigs 4 weeks post-myocardial infarction (MI) underwent percutaneous IM delivery of vehicle (n = 6) or CDC exosomes (n = 6). Magnetic resonance imaging (MRI) performed before and 1 month after treatment revealed that exosomes (but not vehicle) preserved LV volumes and LVEF (−0.1 ± 2.2% vs. −5.4 ± 3.6%, P= 0.01) while decreasing scar size. Histologically, exosomes decreased LV collagen content and cardiomyocyte hypertrophy while increasing vessel density. Conclusion Cardiosphere-derived cell exosomes delivered IM decrease scarring, halt adverse remodelling and improve LVEF in porcine AMI and CMI. While conceptually attractive as cell-free therapeutic agents for myocardial infarction, exosomes have the disadvantage that IM delivery is necessary.


Embo Molecular Medicine | 2017

Y RNA fragment in extracellular vesicles confers cardioprotection via modulation of IL‐10 expression and secretion

Linda Cambier; Geoffrey de Couto; Ahmed Ibrahim; Antonio K. Echavez; Jackelyn Valle; Weixin Liu; Michelle Kreke; Rachel R. Smith; Linda Marbán; Eduardo Marbán

Cardiosphere‐derived cells (CDCs) reduce myocardial infarct size via secreted extracellular vesicles (CDC‐EVs), including exosomes, which alter macrophage polarization. We questioned whether short non‐coding RNA species of unknown function within CDC‐EVs contribute to cardioprotection. The most abundant RNA species in CDC‐EVs is a Y RNA fragment (EV‐YF1); its relative abundance in CDC‐EVs correlates with CDC potency in vivo. Fluorescently labeled EV‐YF1 is actively transferred from CDCs to target macrophages via CDC‐EVs. Direct transfection of macrophages with EV‐YF1 induced transcription and secretion of IL‐10. When cocultured with rat cardiomyocytes, EV‐YF1‐primed macrophages were potently cytoprotective toward oxidatively stressed cardiomyocytes through induction of IL‐10. In vivo, intracoronary injection of EV‐YF1 following ischemia/reperfusion reduced infarct size. A fragment of Y RNA, highly enriched in CDC‐EVs, alters Il10 gene expression and enhances IL‐10 protein secretion. The demonstration that EV‐YF1 confers cardioprotection highlights the potential importance of diverse exosomal contents of unknown function, above and beyond the usual suspects (e.g., microRNAs and proteins).


JACC: Basic to Translational Science | 2016

Cardiosphere-Derived Cells Reverse Heart Failure With Preserved Ejection Fraction in Rats by Decreasing Fibrosis and Inflammation

Romain Gallet; Geoffrey de Couto; Eli Simsolo; Jackelyn Valle; Baiming Sun; Weixin Liu; Eleni Tseliou; Michael R. Zile; Eduardo Marbán

Summary The pathogenesis of heart failure with a preserved ejection fraction (HFpEF) is unclear. Myocardial fibrosis, inflammation, and cardiac hypertrophy have been suggested to contribute to the pathogenesis of HFpEF. Cardiosphere-derived cells (CDCs) are heart-derived cell products with antifibrotic and anti-inflammatory properties. This study tested whether rat CDCs were sufficient to decrease manifestations of HFpEF in hypertensive rats. Starting at 7 weeks of age, Dahl salt-sensitive rats were fed a high-salt diet for 6 to 7 weeks and randomized to receive intracoronary CDCs or placebo. Dahl rats fed normal chow served as controls. High-salt rats developed hypertension, left ventricular (LV) hypertrophy, and diastolic dysfunction, without impairment of ejection fraction. Four weeks after treatment, diastolic dysfunction resolved in CDC-treated rats but not in placebo. The improved LV relaxation was associated with lower LV end-diastolic pressure, decreased lung congestion, and enhanced survival in CDC-treated rats. Histology and echocardiography revealed no decrease in cardiac hypertrophy after CDC treatment, consistent with the finding of sustained, equally-elevated blood pressure in CDC- and placebo-treated rats. Nevertheless, CDC treatment decreased LV fibrosis and inflammatory infiltrates. Serum inflammatory cytokines were likewise decreased after CDC treatment. Whole-transcriptome analysis revealed that CDCs reversed changes in numerous transcripts associated with HFpEF, including many involved in inflammation and/or fibrosis. These studies suggest that CDCs normalized LV relaxation and LV diastolic pressure while improving survival in a rat model of HFpEF. The benefits of CDCs occurred despite persistent hypertension and cardiac hypertrophy. By selectively reversing inflammation and fibrosis, CDCs may be beneficial in the treatment of HFpEF.


Circulation-cardiovascular Interventions | 2015

Intracoronary Delivery of Self-Assembling Heart-Derived Microtissues (Cardiospheres) for Prevention of Adverse Remodeling in a Pig Model of Convalescent Myocardial Infarction

Romain Gallet; Eleni Tseliou; James Dawkins; Ryan Middleton; Jackelyn Valle; David Angert; Heidi Reich; Daniel Luthringer; Michelle Kreke; Rachel R. Smith; Linda Marbán; Eduardo Marbán

Background—Preclinical studies in rodents and pigs indicate that the self-assembling microtissues known as cardiospheres may be more effective than dispersed cardiosphere-derived cells. However, the more desirable intracoronary route has been assumed to be unsafe for cardiosphere delivery: Cardiospheres are large (30–150 &mgr;m), raising concerns about likely microembolization. We questioned these negative assumptions by evaluating the safety and efficacy of optimized intracoronary delivery of cardiospheres in a porcine model of convalescent myocardial infarction. Methods and Results—First, we standardized the size of cardiospheres by modifying culture conditions. Then, dosage was determined by infusing escalating doses of cardiospheres in the left anterior descending artery of naive pigs, looking for acute adverse effects. Finally, in a randomized efficacy study, 14 minipigs received allogeneic cardiospheres (1.3×106) or vehicle 1 month after myocardial infarction. Animals underwent magnetic resonance imaging before infusion and 1 month later to assess left ventricular ejection fraction, scar mass, and viable mass. In the dosing study, we did not observe any evidence of microembolization after cardiosphere infusion. In the post-myocardial infarction study, cardiospheres preserved LV function, reduced scar mass and increased viable mass, whereas placebo did not. Moreover, cardiosphere decreased collagen content, and increased vessel densities and myocardial perfusion. Importantly, intracoronary cardiospheres decreased left ventricular end-diastolic pressure and increased cardiac output. Conclusions—Intracoronary delivery of cardiospheres is safe. Intracoronary cardiospheres are also remarkably effective in decreasing scar, halting adverse remodeling, increasing myocardial perfusion, and improving hemodynamic status after myocardial infarction in pigs. Thus, cardiospheres may be viable therapeutic candidates for intracoronary infusion in selected myocardial disorders.


PLOS ONE | 2016

Widespread Myocardial Delivery of Heart-Derived Stem Cells by Nonocclusive Triple-Vessel Intracoronary Infusion in Porcine Ischemic Cardiomyopathy: Superior Attenuation of Adverse Remodeling Documented by Magnetic Resonance Imaging and Histology

Eleni Tseliou; Hideaki Kanazawa; James Dawkins; Romain Gallet; Michelle Kreke; Rachel R. Smith; Ryan Middleton; Jackelyn Valle; Linda Marbán; Saibal Kar; Rajendra Makkar; Eduardo Marbán

Single-vessel, intracoronary infusion of stem cells under stop-flow conditions has proven safe but achieves only limited myocardial coverage. Continuous flow intracoronary delivery to one or more coronary vessels may achieve broader coverage for treating cardiomyopathy, but has not been investigated. Using nonocclusive coronary guiding catheters, we infused allogeneic cardiosphere-derived cells (CDCs) either in a single vessel or sequentially in all three coronary arteries in porcine ischemic cardiomyopathy and used magnetic resonance imaging (MRI) to assess structural and physiological outcomes. Vehicle-infused animals served as controls. Single-vessel stop-flow and continuous-flow intracoronary infusion revealed equivalent effects on scar size and function. Sequential infusion into each of the three major coronary vessels under stop-flow or continuous-flow conditions revealed equal efficacy, but less elevation of necrotic biomarkers with continuous-flow delivery. In addition, multi-vessel delivery resulted in enhanced global and regional tissue function compared to a triple-vessel placebo-treated group. The functional benefits after global cell infusion were accompanied histologically by minimal inflammatory cellular infiltration, attenuated regional fibrosis and enhanced vessel density in the heart. Sequential multi-vessel non-occlusive delivery of CDCs is safe and provides enhanced preservation of left ventricular function and structure. The current findings provide preclinical validation of the delivery method currently undergoing clinical testing in the Dilated cardiomYopathy iNtervention With Allogeneic MyocardIally-regenerative Cells (DYNAMIC) trial of CDCs in heart failure patients.


Journal of Heart and Lung Transplantation | 2016

Repeated transplantation of allogeneic cardiosphere-derived cells boosts therapeutic benefits without immune sensitization in a rat model of myocardial infarction

Heidi Reich; Eleni Tseliou; Geoffrey de Couto; David Angert; Jackelyn Valle; Yuzu Kubota; Daniel Luthringer; James Mirocha; Baiming Sun; Rachel R. Smith; Linda Marbán; Eduardo Marbán

BACKGROUND A single dose of allogeneic cardiosphere-derived cells (CDCs) improves cardiac function and reduces scarring, and increases viable myocardium in the infarcted rat and pig heart without eliciting a detrimental immune response. Clinical trials using single doses of allogeneic human CDCs are underway. It is unknown whether repeat dosing confers additional benefit or if it elicits an immune response. METHODS Wistar-Kyoto rats underwent coronary artery ligation and intramyocardial injection of CDCs, with a second thoracotomy and repeat CDC injection 3 weeks later. Treatment permutations included 2 doses of allogeneic Brown-Norway CDCs (n = 24), syngeneic Wistar-Kyoto CDCs (n = 24), xenogeneic human CDCs (n = 24) or saline (n = 8). Cardiac function was assessed by transthoracic echocardiography, infarct size and inflammatory infiltration by histology, and cellular and humoral immune responses by lymphocyte proliferation and alloantibody assays. RESULTS Repeat dosing of allogeneic and syngeneic CDCs improved ejection fraction by 5.2% (95% CI 2.1 to 8.3) and 6.8% (95% CI 3.8 to 9.8) after the first dose, and by 3.4% (95% CI 0.1% to 6.8%) and 6.4% (95% CI 4.2% to 8.6%) after the second dose. Infarct size was equally reduced with repeat dosing of syngeneic and allogeneic CDCs relative to xenogeneic and control treatments (p < 0.0001). Significant rejection-like infiltrates were present only in the xenogeneic group; likewise, lymphocyte proliferation and antibody assays were positive in the xenogeneic and negative in syngeneic and allogeneic groups. CONCLUSIONS Repeat dosing of allogeneic CDCs in immunocompetent rats is safe and effective, consistent with the known immunomodulatory and anti-inflammatory properties of CDCs. These findings motivate clinical testing of repeatedly dosed CDCs for chronic heart disease.


Hypertension | 2018

Angiotensin II–Induced End-Organ Damage in Mice Is Attenuated by Human Exosomes and by an Exosomal Y RNA Fragment

Linda Cambier; Jorge F. Giani; Weixin Liu; Takeshi Ijichi; Antonio K. Echavez; Jackelyn Valle; Eduardo Marbán

Hypertension often leads to cardiovascular disease and kidney dysfunction. Exosomes secreted from cardiosphere-derived cells (CDC-exo) and their most abundant small RNA constituent, the Y RNA fragment EV-YF1, exert therapeutic benefits after myocardial infarction. Here, we investigated the effects of CDC-exo and EV-YF1, each administered individually, in a model of cardiac hypertrophy and kidney injury induced by chronic infusion of Ang (angiotensin) II. After 2 weeks of Ang II, multiple doses of CDC-exo or EV-YF1 were administered retro-orbitally. Ang II infusion induced an elevation in systolic blood pressure that was not affected by CDC-exo or EV-YF1. Echocardiography confirmed that Ang II infusion led to cardiac hypertrophy. CDC-exo and EV-YF1 both attenuated cardiac hypertrophy and reduced cardiac inflammation and fibrosis. In addition, both CDC-exo and EV-YF1 improved kidney function and diminished renal inflammation and fibrosis. The beneficial effects of CDC-exo and EV-YF1 were associated with changes in the expression of the anti-inflammatory cytokine IL (interleukin)-10 in plasma, heart, spleen, and kidney. In summary, infusions of CDC-exo or EV-YF1 attenuated cardiac hypertrophy and renal injury induced by Ang II infusion, without affecting blood pressure, in association with altered IL-10 expression. Exosomes and their defined noncoding RNA contents may represent potential new therapeutic approaches for hypertension-associated cardiovascular and renal damage.


Journal of the American College of Cardiology | 2015

Fibroblasts Rendered Antifibrotic, Antiapoptotic, and Angiogenic by Priming With Cardiosphere-Derived Extracellular Membrane Vesicles.

Eleni Tseliou; Joseph Fouad; Heidi Reich; Leandro Slipczuk; Geoffrey de Couto; Mark Aminzadeh; Ryan Middleton; Jackelyn Valle; Liu Weixin; Eduardo Marbán


European Heart Journal | 2017

Cardiac and systemic rejuvenation after cardiosphere-derived cell therapy in senescent rats

Lilian Grigorian-Shamagian; Weixin Liu; Soraya Fereydooni; Ryan Middleton; Jackelyn Valle; Jae Hyung Cho; Eduardo Marbán


Circulation | 2015

Abstract 15925: Newt Exosomes are Bioactive on Mammalian Heart, Enhancing Proliferation of Rat Cardiomyocytes and Improving Recovery After Myocardial Infarction

Eleni Tseliou; Liu Weixin; Jackelyn Valle; Baiming Sun; Maria Mirotsou; Eduardo Marbán

Collaboration


Dive into the Jackelyn Valle's collaboration.

Top Co-Authors

Avatar

Eduardo Marbán

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Eleni Tseliou

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ryan Middleton

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Linda Marbán

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Michelle Kreke

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

James Dawkins

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Geoffrey de Couto

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Romain Gallet

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Weixin Liu

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rachel R. Smith

Cedars-Sinai Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge