Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jackie C. Rudd is active.

Publication


Featured researches published by Jackie C. Rudd.


BMC Genomics | 2010

Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.).

Shiaoman Chao; Jorge Dubcovsky; Jan Dvorak; Ming-Cheng Luo; Rustam Matnyazov; Dale R. Clark; L. E. Talbert; James A. Anderson; Susanne Dreisigacker; Karl D. Glover; Jianli Chen; Kim Garland Campbell; Phil L. Bruckner; Jackie C. Rudd; Scott D. Haley; Brett F. Carver; Sid Perry; Mark E. Sorrells; Eduard Akhunov

BackgroundSingle nucleotide polymorphisms (SNPs) are ideally suited for the construction of high-resolution genetic maps, studying population evolutionary history and performing genome-wide association mapping experiments. Here, we used a genome-wide set of 1536 SNPs to study linkage disequilibrium (LD) and population structure in a panel of 478 spring and winter wheat cultivars (Triticum aestivum) from 17 populations across the United States and Mexico.ResultsMost of the wheat oligo pool assay (OPA) SNPs that were polymorphic within the complete set of 478 cultivars were also polymorphic in all subpopulations. Higher levels of genetic differentiation were observed among wheat lines within populations than among populations. A total of nine genetically distinct clusters were identified, suggesting that some of the pre-defined populations shared significant proportion of genetic ancestry. Estimates of population structure (FST) at individual loci showed a high level of heterogeneity across the genome. In addition, seven genomic regions with elevated FST were detected between the spring and winter wheat populations. Some of these regions overlapped with previously mapped flowering time QTL. Across all populations, the highest extent of significant LD was observed in the wheat D-genome, followed by lower LD in the A- and B-genomes. The differences in the extent of LD among populations and genomes were mostly driven by differences in long-range LD ( > 10 cM).ConclusionsGenome- and population-specific patterns of genetic differentiation and LD were discovered in the populations of wheat cultivars from different geographic regions. Our study demonstrated that the estimates of population structure between spring and winter wheat lines can identify genomic regions harboring candidate genes involved in the regulation of growth habit. Variation in LD suggests that breeding and selection had a different impact on each wheat genome both within and among populations. The higher extent of LD in the wheat D-genome versus the A- and B-genomes likely reflects the episodes of recent introgression and population bottleneck accompanying the origin of hexaploid wheat. The assessment of LD and population structure in this assembled panel of diverse lines provides critical information for the development of genetic resources for genome-wide association mapping of agronomically important traits in wheat.


Insect Molecular Biology | 2007

Cross-species transferability of microsatellite markers from six aphid (Hemiptera: Aphididae) species and their use for evaluating biotypic diversity in two cereal aphids.

Yiqun Weng; P. Azhaguvel; G. J. Michels; Jackie C. Rudd

The abundance and distribution of microsatellites, or simple sequence repeats (SSRs) were explored in the expressed sequence tag (EST) and genomic sequences of the pea aphid, Acyrthosiphon pisum (Harris), and the green peach aphid, Myzus persicae (Sulzer). A total of 108 newly developed, together with 40 published, SSR markers were investigated for their cross‐species transferability among six aphid species. Genetic diversity among six greenbug, Schizaphis graminum (Rondani) and two Russian wheat aphid, Diuraphis noxia (Kurdjumov) biotypes was further examined with 67 transferable SSRs. It was found that the pea aphid genome is abundant in SSRs with a unique frequency and distribution of SSR motifs. Cross‐species transferability of EST‐derived SSRs is dependent on phylogenetic closeness between SSR donor and target species, but is higher than that of genomic SSRs. Neighbor‐joining analysis of SSR data revealed host‐adapted genetic divergence as well as regional differentiation of greenbug biotypes. The two Russian wheat aphid biotypes are genetically as diverse as the greenbug ones although it was introduced into the USA only 20 years ago. This is the first report of large‐scale development of SSR markers in aphids, which are expected to have wide applications in aphid genetic, ecological and evolutionary studies.


Journal of Economic Entomology | 2010

Biotypic Diversity in Greenbug (Hemiptera: Aphididae): Microsatellite-Based Regional Divergence and Host-Adapted Differentiation

Yiqun Weng; Azhaguvel Perumal; John D. Burd; Jackie C. Rudd

ABSTRACT Nineteen isolates of the cereal aphid pest greenbug, Schizaphis graminum (Rondani) (Hemiptera: Aphididae), were collected from wheat, Triticum aestivum L.; barley, Hordeum vulgare L.; or noncultivated grass hosts in five locations from Colorado and Wyoming. Parthenogenetic colonies were established. Biotypic profiles of the 19 isolates were determined based on their abilities to damage a set of host plant differentials, and 13 new biotypes were identified. Genetic diversity among the 19 isolates and five previously designated greenbug biotypes (E, G, H, I, and K) was examined with 31 cross-species transferable microsatellite (simple sequence repeat) markers. Neighbor-joining clustering analysis of marker data revealed host-adapted genetic divergence as well as regional differentiation of greenbug populations. Host associated biotypic variation seems to be more obvious in “agricultural biotypes,” whereas isolates collected from noncultivated grasses tend to show more geographic divergence. It seems that the biotype sharing the most similar biotypic profiles and the same geographic region with current prevailing one may have the greatest potential to become the new prevailing biotype. Close monitoring of greenbug population dynamics especially biotypic variation on both crop plants and noncultivated grasses in small grain production areas may be a useful strategy for detecting potentially new prevailing virulent biotypes of the greenbug.


Plant Science | 2013

Transcriptomics of induced defense responses to greenbug aphid feeding in near isogenic wheat lines.

Srirama Krishna Reddy; Yiqun Weng; Jackie C. Rudd; Alina Akhunova; Shuyu Liu

The greenbug aphid, Schizaphis graminum (Rondani) is an important cereal pest, periodically threatening wheat yields in the United States and around the world. The single dominant gene, Gb3-based resistance is highly durable against prevailing greenbug biotypes under field conditions; however, the molecular mechanisms of Gb3-mediated defense responses remain unknown. We used Affymetrix GeneChip Wheat Genome Arrays to investigate the transcriptomics of host defense responses upon greenbug feeding on resistant and susceptible bulks (RB and SB, respectively) derived from two near-isogenic lines. The study identified 692 differentially expressed transcripts and further functional classification recognized 122 transcripts that are putatively associated to mediate biotic stress responses. In RB, Gb3-mediated resistance resulted in activation of transmembrane receptor kinases and signaling-related transcripts involved in early signal transduction cascades. While in SB, transcripts mediating final steps in jasmonic acid biosynthesis, redox homeostasis, peroxidases, glutathione S-transferases, and notable defense-related secondary metabolites were induced. Also transcripts involved in callose and cell wall decomposition were elevated SB, plausibly to facilitate uninterrupted feeding operations. These results suggest that Gb3-mediated resistance is less vulnerable to cell wall modification and the data provides ample tools for further investigations concerning R gene based model of resistance.


Euphytica | 2013

Family-based QTL mapping of heat stress tolerance in primitive tetraploid wheat (Triticum turgidum L.)

Mohamed B. Ali; Amir M. H. Ibrahim; Subas Malla; Jackie C. Rudd; Dirk B. Hays

Identification of quantitative trait loci (QTL) and markers associated with heat and drought tolerance is warranted for marker-assisted selection in wheat (Triticum aestivum L.) breeding programs in areas prone to these abiotic stresses. Our study used a family-based mapping approach in which 19 families consisting of 384 individuals were developed by three-way crosses involving the heat tolerant, tetraploid cultivated emmer (Triticum turgidum L. var dicoccum) genotype IG45069 and ten heat susceptible tetraploid genotypes, IG44999, IG44961, IG45413, IG83047, IG45441, IG127682, IG45448, IG110572, IG88723 and IG54073, in order to detect QTL and markers associated with heat tolerance. The 384 individuals were phenotyped for physiological traits associated with heat tolerance and genotyped by SSR markers. The QTL associated with heat stress tolerance, as measured by chlorophyll content, flag leaf temperature depression (FLTD) and individual kernel weight (IKW) were mapped on chromosomes 1B (QChlc.tamu-1B), 2B (QFlt.tamu-2B), and 5A (QIkw.tamu-5A), respectively, using linkage analysis. Alleles from IG45069 possessed the highest associations with the phenotypic data for the studied traits. This study demonstrates that a family-based mapping approach can be utilized in rapid detection of QTL associated with heat tolerance in wheat based on linkage and association analyses.


Plant Genetic Resources | 2009

Aphid feeding response and microsatellite- based genetic diversity among diploid Brachypodium distachyon (L.) Beauv accessions

Perumal Azhaguvel; Wanlong Li; Jackie C. Rudd; Bikram S. Gill; G. J. Michels; Yiqun Weng

False brome grass, Brachypodium distachyon (L.) Beauv, has been proposed as a new model species to bridge rice and temperate cereal crops for genomics research. However, much basic information for this species is still lacking. In this study, six diploid B. distachyon (2n ¼ 2x ¼ 10) accessions (Bd1-1, Bd2-3, Bd3-1, Bd18-1, Bd21 and BD29) were evaluated for their response to infestation by two cereal aphid pests of common wheat (Triticum aestivum L.): the greenbug, Schizaphis graminum Rondani, and the Russian wheat aphid (RWA), Diuraphis noxia Mordvilko. Through database mining of B. distachyon expressed sequence tag (EST) and genomic DNA sequences, 160 EST- and 21 genomic microsatellite markers were developed and used to evaluate genetic diversity among the B. distachyon accessions. All six accessions were resistant to RWA biotype RWA1 but showed distinct responses to feeding by greenbug biotypes C and E, as well as RWA2 RWAs. Although microsatellite-based genetic diversity among different accessions was generally low, Bd1-1 and BD29 were the most diverged from the other four lines. The genetic divergence was correlated with geographical distances between the Brachypodium accessions. Comparison of simple sequence repeat polymorphisms in three inbred lines (Bd2-3, Bd3-1 and Bd18-1) with their respective original parental lines revealed no effect of inbreeding on genetic diversity. Phylogenetic analysis suggested that Aegilops tauschii (Coss.) Schmal., the D genome donor of common wheat, was closer to B. distachyon than to rice. The greenbug -B. distachyon system seems to be a model of choice for plant–aphid interaction studies in the grass genome.


Journal of Economic Entomology | 2005

Spatial and Temporal Distribution of Induced Resistance to Greenbug (Homoptera: Aphididae) Herbivory in Preconditioned Resistant and Susceptible near Isogenic Plants of Wheat

Yiqun Weng; G. J. Michels; Mark D. Lazar; Jackie C. Rudd

Abstract Interactions between biotype E greenbugs, Schizaphis graminum (Rodani), and two near isogenic lines of the greenbug resistance gene Gb3 of wheat, Triticum aestivum L., were examined for 62 d after infestation. By comparing aphid performance and host responses on control and greenbug-preconditioned plants, we demonstrated that systemic resistance to greenbug herbivory was inducible in the resistant genotype with varying intensities and effectiveness in different parts of the plants. Preconditioning of susceptible plants resulted in modification of within-plant aphid distribution and reduction of cumulative greenbug densities, but it showed no effect on reducing greenbug feeding damage to host plant. Preconditioning of resistant plants altered greenbug population dynamics by reducing the size and buffering the fluctuation of the aphid population. Preconditioning in the first (oldest) leaf of the resistant plant had no phenotypically detectable effect in the stem and induced susceptibility locally in the first leaf within the first 2 d after infestation. The preconditioning-induced resistance reduced greenbug density, delayed aphid density peaks and extended the life of younger leaves in resistant plants. Expression of induced resistance was spatially and temporally dynamic within the plant, which occurred more rapidly, was longer in duration, and stronger in intensity in younger leaves. Host resistance gene-mediated induced resistance was effective in lowering greenbug performance and reducing damage from greenbug herbivory in host plants. Results from this study supported the optimal defense theory regarding within-plant defense allocation.


Euphytica | 2004

Generation means analysis of wheat streak mosaic virus resistance in winter wheat

Frederick Hakizimana; Amir M. H. Ibrahim; M. A. C. Langham; Jackie C. Rudd; Scott D. Haley

Wheat streak mosaic virus (WSMV; Family: potyviridae; Genus: Tritimovirus) is a major threat to winter wheat (Triticum aestivum L. em. Thell) production worldwide, yet little is known about the genetic control of resistance. Our objective was to determine the mode of inheritance and type of gene action of WSMV resistance in two winter wheat crosses involving a resistant line, ‘OK65C93-8’, and two susceptible cultivars, ‘Tandem’ and ‘Vista’. For each cross, parents, F1, F2, and backcross plants were inoculated and evaluated for WSMV resistance in two replicated greenhouse experiments. Generation means analysis indicated that additive, dominance, and epistatic effects were all involved in the inheritance of WSMV resistance. Broad-sense heritability estimates for visual symptom rating and ELISA values were high for both crosses (0.84–0.91). Narrow-sense heritability estimates were low in the Tandem/OK65C93-8 cross (0.43–0.45) and moderate in the Vista/OK65C93-8 cross (0.71–0.74). Due to the presence of greater non-additive gene effects combined with low narrow-sense heritability in the Tandem/OK65C93-8 cross, selecting for WSMV resistance in this cross would be complex if using conventional methods. On the other hand, the significant contribution of additive gene effects combined with moderate narrow-sense heritability in the Vista/OK65C93-8 cross suggested that it could be exploited to select for WSMV resistance. Progress from selection for WSMV resistance in early generations of winter wheat may vary among populations as indicated in this study. Therefore, evaluating genetic control of parental combinations may be warranted prior to selecting for WSMV resistance from this source.


PLOS ONE | 2017

Mapping of quantitative trait loci for grain yield and its components in a US popular winter wheat TAM 111 using 90K SNPs

Silvano Assanga; Maria P. Fuentealba; Guorong Zhang; Chor-Tee Tan; Smit Dhakal; Jackie C. Rudd; Amir M. H. Ibrahim; Qingwu Xue; Scott D. Haley; Jianli Chen; Shiaoman Chao; Jason V. Baker; Kirk E. Jessup; Shuyu Liu

Stable quantitative trait loci (QTL) are important for deployment in marker assisted selection in wheat (Triticum aestivum L.) and other crops. We reported QTL discovery in wheat using a population of 217 recombinant inbred lines and multiple statistical approach including multi-environment, multi-trait and epistatic interactions analysis. We detected nine consistent QTL linked to different traits on chromosomes 1A, 2A, 2B, 5A, 5B, 6A, 6B and 7A. Grain yield QTL were detected on chromosomes 2B.1 and 5B across three or four models of GenStat, MapQTL, and QTLNetwork while the QTL on chromosomes 5A.1, 6A.2, and 7A.1 were only significant with yield from one or two models. The phenotypic variation explained (PVE) by the QTL on 2B.1 ranged from 3.3–25.1% based on single and multi-environment models in GenStat and was pleiotropic or co-located with maturity (days to heading) and yield related traits (test weight, thousand kernel weight, harvest index). The QTL on 5B at 211 cM had PVE range of 1.8–9.3% and had no significant pleiotropic effects. Other consistent QTL detected in this study were linked to yield related traits and agronomic traits. The QTL on 1A was consistent for the number of spikes m-2 across environments and all the four analysis models with a PVE range of 5.8–8.6%. QTL for kernels spike-1 were found in chromosomes 1A, 2A.1, 2B.1, 6A.2, and 7A.1 with PVE ranged from 5.6–12.8% while QTL for thousand kernel weight were located on chromosomes 1A, 2B.1, 5A.1, 6A.2, 6B.1 and 7A.1 with PVEranged from 2.7–19.5%. Among the consistent QTL, five QTL had significant epistatic interactions (additive × additive) at least for one trait and none revealed significant additive × additive × environment interactions. Comparative analysis revealed that the region within the confidence interval of the QTL on 5B from 211.4–244.2 cM is also linked to genes for aspartate-semialdehyde dehydrogenase, splicing regulatory glutamine/lysine-rich protein 1 isoform X1, and UDP-glucose 6-dehydrogenase 1-like isoform X1. The stable QTL could be important for further validation, high throughput SNP development, and marker-assisted selection (MAS) in wheat.


Journal of Crop Improvement | 2016

Spectral Reflectance Models for Characterizing Winter Wheat Genotypes

S. Ajayi; Srirama Krishna Reddy; P. H. Gowda; Qingwu Xue; Jackie C. Rudd; G. Pradhan; Shuyu Liu; B. A. Stewart; C. Biradar; Kirk E. Jessup

ABSTRACT Optimum wheat (Triticum aestivum L.) yield can be achieved by developing and growing the best genotypes in the most suited environments. However, exhaustive field measurements are required to characterize plants with desirable traits in breeding plots. Remote sensing tools have been shown to provide relatively accurate and simultaneous measurements of plant characteristics without destructive sampling, and at low cost. The aim of this research was to develop and evaluate spectral reflectance-based models for characterizing winter wheat genotypes in the semiarid U.S. Southern Great Plains (SGP). Field experiments were conducted at Bushland, TX, during the 2011–2012 growing season. The spectral behavior of 20 wheat genotypes with wide genetic background was analyzed in relation to leaf area index (LAI) and yield under irrigated and dryland conditions. Reflectance-based models were developed and evaluated using three approaches: the maximum correlations, the optimum multiple narrow band reflectance (OMNBR), and the vegetation indices (VIs). Results indicated that the combinations of two to four bands in OMNBR models explained most of the variability (65% to 89% and 51% to 95% for dryland and irrigated conditions, respectively). Spectral regions in visible (VIS: 350–700 nm), near-infrared (NIR: 700–1,300 nm), and mid-infrared (MIR: 1,300–2,500 nm) were sensitive to LAI and yield, most commonly the MIR region. Models developed in this study are expected to assist in developing rapid and reliable methods for germplasm screening and selection of winter wheat genotypes.

Collaboration


Dive into the Jackie C. Rudd's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yiqun Weng

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Scott D. Haley

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge