Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jackie E. Kendrick is active.

Publication


Featured researches published by Jackie E. Kendrick.


Frontiers of Earth Science in China | 2015

Geomechanical rock properties of a basaltic volcano

Lauren N. Schaefer; Jackie E. Kendrick; Yan Lavallée; Gustavo Chigna

In volcanic regions, reliable estimates of mechanical properties for specific volcanic events such as cyclic inflation-deflation cycles by magmatic intrusions, thermal stressing, and high temperatures are crucial for building accurate models of volcanic phenomena. This study focuses on the challenge of characterizing volcanic materials for the numerical analyses of such events. To do this, we evaluated the physical (porosity, permeability) and mechanical (strength) properties of basaltic rocks at Pacaya Volcano (Guatemala) through a variety of laboratory experiments, including: room temperature, high temperature (935 °C), and cyclically-loaded uniaxial compressive strength tests on as-collected and thermally-treated rock samples. Knowledge of the material response to such varied stressing conditions is necessary to analyze potential hazards at Pacaya, whose persistent activity has led to 13 evacuations of towns near the volcano since 1987. The rocks show a non-linear relationship between permeability and porosity, which relates to the importance of the crack network connecting the vesicles in these rocks. Here we show that strength not only decreases with porosity and permeability, but also with prolonged stressing (i.e., at lower strain rates) and upon cooling. Complimentary tests in which cyclic episodes of thermal or load stressing showed no systematic weakening of the material on the scale of our experiments. Most importantly, we show the extremely heterogeneous nature of volcanic edifices that arise from differences in porosity and permeability of the local lithologies, the limited lateral extent of lava flows, and the scars of previous collapse events. Input of these process-specific rock behaviors into slope stability and deformation models can change the resultant hazard analysis. We anticipate that an increased parameterization of rock properties will improve mitigation power.


Geology | 2016

Universal scaling of fluid permeability during volcanic welding and sediment diagenesis

Fabian B. Wadsworth; Jérémie Vasseur; Bettina Scheu; Jackie E. Kendrick; Yan Lavallée; Donald B. Dingwell

In sedimentary basins and volcanic edifices, granular materials undergo densification that results in a decrease of porosity and permeability. Understanding the link between porosity and permeability is central to predicting fluid migration in the sedimentary crust and during volcanic outgassing. Sedimentary diagenesis and volcanic welding both involve the transition of an initially granular material to a non-granular (porous to dense) rock. Scaling laws for the prediction of fluid permeability during such granular densification remain contested. Here, based on collated literature data for a range of sedimentary and volcanic rocks for which the initial material state was granular, we test theoretical scaling laws. We provide a statistical tool for predicting the evolution of the internal surface area of a system of particles during isotropic diagenesis and welding, which in turn facilitates the universal scaling of the fluid permeability of these rocks. We find agreement across a large range of measured natural permeabilities. We propose that this result will prove useful for geologists involved in modeling porosity-permeability evolution in similar settings.


The Encyclopedia of Volcanoes (Second Edition) | 2015

Lava Dome Eruptions

Eliza S. Calder; Yan Lavallée; Jackie E. Kendrick; Marc Bernstein

Lava domes form during volcanic eruptions in which highly viscous magma accumulates in the near-vent region. During this activity, gas pressure build up in the lava dome or shallow conduit region can destabilize the structure and trigger transitions to explosive eruptions or lava dome collapse. In this chapter we introduce lava dome eruptive activity as well as details of recent, well-monitored lava dome eruptions at Mount St Helens (USA), Soufriere Hills (Montserrat), and Chaiten (Chile). We then discuss dome emplacement and the influence of rheological factors such as silica, crystal, and gas content on the embrittlement of magma and its control on eruption style. Lava domes expose a range of morphologies as well as internal structural features that affects outgassing efficiency, their structural stability, and the generation of associated hazards. We conclude with an overview of hazards commonly associated with lava dome eruptions including dome instability, collapse events, and explosive activity that can cause devastating pyroclastic flows.


Nature | 2015

Thermal vesiculation during volcanic eruptions

Yan Lavallée; Donald B. Dingwell; Jeffrey B. Johnson; Corrado Cimarelli; Adrian J. Hornby; Jackie E. Kendrick; Felix W. von Aulock; Ben Kennedy; Benjamin J. Andrews; Fabian B. Wadsworth; Emma Rhodes; Gustavo Chigna

Terrestrial volcanic eruptions are the consequence of magmas ascending to the surface of the Earth. This ascent is driven by buoyancy forces, which are enhanced by bubble nucleation and growth (vesiculation) that reduce the density of magma. The development of vesicularity also greatly reduces the ‘strength’ of magma, a material parameter controlling fragmentation and thus the explosive potential of the liquid rock. The development of vesicularity in magmas has until now been viewed (both thermodynamically and kinetically) in terms of the pressure dependence of the solubility of water in the magma, and its role in driving gas saturation, exsolution and expansion during decompression. In contrast, the possible effects of the well documented negative temperature dependence of solubility of water in magma has largely been ignored. Recently, petrological constraints have demonstrated that considerable heating of magma may indeed be a common result of the latent heat of crystallization as well as viscous and frictional heating in areas of strain localization. Here we present field and experimental observations of magma vesiculation and fragmentation resulting from heating (rather than decompression). Textural analysis of volcanic ash from Santiaguito volcano in Guatemala reveals the presence of chemically heterogeneous filaments hosting micrometre-scale vesicles. The textures mirror those developed by disequilibrium melting induced via rapid heating during fault friction experiments, demonstrating that friction can generate sufficient heat to induce melting and vesiculation of hydrated silicic magma. Consideration of the experimentally determined temperature and pressure dependence of water solubility in magma reveals that, for many ascent paths, exsolution may be more efficiently achieved by heating than by decompression. We conclude that the thermal path experienced by magma during ascent strongly controls degassing, vesiculation, magma strength and the effusive–explosive transition in volcanic eruptions.


Journal of Geophysical Research | 2015

Permeability of compacting porous lavas

P. A. Ashwell; Jackie E. Kendrick; Yan Lavallée; Ben Kennedy; K.-U. Hess; F.W. von Aulock; Fabian B. Wadsworth; Jérémie Vasseur; Donald B. Dingwell

The highly transient nature of outgassing commonly observed at volcanoes is in part controlled by the permeability of lava domes and shallow conduits. Lava domes generally consist of a porous outer carapace surrounding a denser lava core with internal shear zones of variable porosity. Here we examine densification using uniaxial compression experiments on variably crystalline and porous rhyolitic dome lavas from the Taupo Volcanic Zone. Experiments were conducted at 900°C and an applied stress of 3 MPa to 60% strain, while monitoring acoustic emissions to track cracking. The evolution of the porous network was assessed via X-ray computed tomography, He-pycnometry, and relative gas permeability. High starting connected porosities led to low apparent viscosities and high strain rates, initially accompanied by abundant acoustic emissions. As compaction ensued, the lavas evolved; apparent viscosity increased and strain rate decreased due to strain hardening of the suspensions. Permeability fluctuations resulted from the interplay between viscous flow and brittle failure. Where phenocrysts were abundant, cracks had limited spatial extent, and pore closure decreased axial and radial permeability proportionally, maintaining the initial anisotropy. In crystal-poor lavas, axial cracks had a more profound effect, and permeability anisotropy switched to favor axial flow. Irrespective of porosity, both crystalline samples compacted to a threshold minimum porosity of 17–19%, whereas the crystal-poor sample did not achieve its compaction limit. This indicates that unconfined loading of porous dome lavas does not necessarily form an impermeable plug and may be hindered, in part by the presence of crystals.


Frontiers of Earth Science in China | 2016

Blowing Off Steam: Tuffisite Formation As a Regulator for Lava Dome Eruptions

Jackie E. Kendrick; Yan Lavallée; Nick Varley; Fabian B. Wadsworth; Oliver D. Lamb; Jérémie Vasseur

Tuffisites are veins of variably sintered, pyroclastic particles that form in conduits and lava domes as a result of localized fragmentation events during gas-and-ash explosions. Those observed in-situ on the active 2012 lava dome of Volcan de Colima range from voids with intra-clasts showing little movement and interpreted to be failure-nuclei, to sub-parallel lenses of sintered granular aggregate interpreted as fragmentation horizons, through to infilled fractures with evidence of viscous remobilization. All tuffisites show evidence of sintering. Further examination of the complex fracture-and-channel patterns reveals viscous backfill by surrounding magma, suggesting that lava fragmentation was followed by stress relaxation and continued viscous deformation as the tuffisites formed. The natural tuffisites are more permeable than the host andesite, and have a wide range of porosity and permeability compared to a narrower window for the host rock, and gauging from their significant distribution across the dome, we posit that the tuffisite veins may act as important outgassing pathways. To investigate tuffisite formation we crushed and sieved andesite from the lava dome and sintered it at magmatic temperatures for different times. We then assessed the healing and sealing ability by measuring porosity and permeability, showing that sintering reduces both over time. During sintering the porosity-permeability reduction occurs due to the formation of viscous necks between adjacent grains, a process described by the neck-formation model of Frenkel (1945). This process leads the granular starting material to a porosity-permeability regime anticipated for effusive lavas, and which describes the natural host lava as well as the most impervious of natural tuffisites. This suggests that tuffisite formation at Volcan de Colima constructed a permeable network that enabled gas to bleed passively from the magma. We postulate that this progressively reduced the lava dome’s ability to seal and build pressure that drives explosions. Indeed, the time interval between explosions during 2007 to 2011 gradually increased before the onset of a period of quiescence starting in June 2011. We suggest that the permeability evolution during tuffisite formation has important consequences for modeling of gas-and-ash explosions, common at dome-forming volcanoes.


Scientific Reports | 2017

The permeability of fractured rocks in pressurised volcanic and geothermal systems

Anthony Lamur; Jackie E. Kendrick; G.H. Eggertsson; Richard Wall; James D. Ashworth; Yan Lavallée

The connectivity of rocks’ porous structure and the presence of fractures influence the transfer of fluids in the Earth’s crust. Here, we employed laboratory experiments to measure the influence of macro-fractures and effective pressure on the permeability of volcanic rocks with a wide range of initial porosities (1–41 vol. %) comprised of both vesicles and micro-cracks. We used a hand-held permeameter and hydrostatic cell to measure the permeability of intact rock cores at effective pressures up to 30 MPa; we then induced a macro-fracture to each sample using Brazilian tensile tests and measured the permeability of these macro-fractured rocks again. We show that intact rock permeability increases non-linearly with increasing porosity and decreases with increasing effective pressure due to compactional closure of micro-fractures. Imparting a macro-fracture both increases the permeability of rocks and their sensitivity to effective pressure. The magnitude of permeability increase induced by the macro-fracture is more significant for dense rocks. We finally provide a general equation to estimate the permeability of intact and fractured rocks, forming a basis to constrain fluid flow in volcanic and geothermal systems.


Journal of Geophysical Research | 2015

Spine growth and seismogenic faulting at Mt. Unzen, Japan

Adrian J. Hornby; Jackie E. Kendrick; Oliver D. Lamb; Takehiro Hirose; Silvio De Angelis; Felix W. von Aulock; Kodo Umakoshi; Takahiro Miwa; Sarah Henton De Angelis; Fabian B. Wadsworth; K.-U. Hess; Donald B. Dingwell; Yan Lavallée

The concluding episode of activity during the recent eruption of Mt. Unzen (October 1994 to February 1995) was characterized by incremental spine extrusion, accompanied by seismicity. Analysis of the seismic record reveals the occurrence of two dominant long-period event families associated with a repeating, nondestructive source mechanism, which we attribute to magma failure and fault-controlled ascent. We obtain constraints on the slip rate and distance of faulting events within these families. That analysis is complemented by an experimental thermomechanical investigation of fault friction in Mt. Unzen dacitic dome rock using a rotary-shear apparatus at variable slip rates and normal stresses. A power density threshold is found at 0.3 MW m−2, above which frictional melt forms and controls the shear resistance to slip, inducing a deviation from Byerlees frictional law. Homogenized experimentally generated pseudotachylytes have a similar final chemistry, thickness, and crystal content, facilitating the construction of a rheological model for particle suspensions. This is compared to the viscosity constrained from the experimental data, to assess the viscous control on fault dynamics. The onset of frictional melt formation during spine growth is constrained to depths below 300 m for an average slip event. This combination of experimental data, viscosity modeling, and seismic analysis offers a new description of material response during conduit plug flow and spine growth, showing that volcanic pseudotachylyte may commonly form and modify fault friction during faulting of dome rock. This model furthers our understanding of faulting and seismicity during lava dome formation and is applicable to other eruption modes.


Bulletin of Volcanology | 2013

The influence of thermal and cyclic stressing on the strength of rocks from Mount St. Helens, Washington

Jackie E. Kendrick; Rosanna Smith; Peter Sammonds; Philip George Meredith; Matthew Dainty; John S. Pallister

Stratovolcanoes and lava domes are particularly susceptible to sector collapse resulting from wholesale rock failure as a consequence of decreasing rock strength. Here, we provide insights into the influence of thermal and cyclic stressing on the strength and mechanical properties of volcanic rocks. Specifically, this laboratory study examines the properties of samples from Mount St. Helens; chosen because its strength and stability have played a key role in its history, influencing the character of the infamous 1980 eruption. We find that thermal stressing exerts different effects on the strengths of different volcanic units; increasing the heterogeneity of rocks in situ. Increasing the uniaxial compressive stress generates cracking, the timing and magnitude of which was monitored via acoustic emission (AE) output during our experiments. AEs accelerated in the approach to failure, sometimes following the pattern predicted by the failure forecast method (Kilburn 2003). Crack damage during the experiments was tracked using the evolving static Young’s modulus and Poisson’s ratio, which represent the quasi-static deformation in volcanic edifices more accurately than dynamic elastic moduli which are usually implemented in volcanic models. Cyclic loading of these rocks resulted in a lower failure strength, confirming that volcanic rocks may be weakened by repeated inflation and deflation of the volcanic edifice. Additionally, volcanic rocks in this study undergo significant elastic hysteresis; in some instances, a material may fail at a stress lower than the peak stress which has previously been endured. Thus, a volcanic dome repeatedly inflated and deflated may progressively weaken, possibly inducing failure without necessarily exceeding earlier conditions.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Fault rheology beyond frictional melting

Yan Lavallée; Takehiro Hirose; Jackie E. Kendrick; K.-U. Hess; Donald B. Dingwell

Significance During an earthquake, the mechanical work of friction along the fault is partly dissipated as heat, which results in rock melting and pseudotachylyte generation along the fault plane. Beyond this point, it is generally believed that Newtonian viscous forces regulate slip. Molten rocks are, however, viscoelastic bodies exhibiting the so-called glass transition of liquid-like to solid-like response to stresses that allows the melt itself to fracture. This simple fact, the significance of which is demonstrated in high-speed frictional melting experiments, redefines fault slip rheology in major earthquakes. During earthquakes, comminution and frictional heating both contribute to the dissipation of stored energy. With sufficient dissipative heating, melting processes can ensue, yielding the production of frictional melts or “pseudotachylytes.” It is commonly assumed that the Newtonian viscosities of such melts control subsequent fault slip resistance. Rock melts, however, are viscoelastic bodies, and, at high strain rates, they exhibit evidence of a glass transition. Here, we present the results of high-velocity friction experiments on a well-characterized melt that demonstrate how slip in melt-bearing faults can be governed by brittle fragmentation phenomena encountered at the glass transition. Slip analysis using models that incorporate viscoelastic responses indicates that even in the presence of melt, slip persists in the solid state until sufficient heat is generated to reduce the viscosity and allow remobilization in the liquid state. Where a rock is present next to the melt, we note that wear of the crystalline wall rock by liquid fragmentation and agglutination also contributes to the brittle component of these experimentally generated pseudotachylytes. We conclude that in the case of pseudotachylyte generation during an earthquake, slip even beyond the onset of frictional melting is not controlled merely by viscosity but rather by an interplay of viscoelastic forces around the glass transition, which involves a response in the brittle/solid regime of these rock melts. We warn of the inadequacy of simple Newtonian viscous analyses and call for the application of more realistic rheological interpretation of pseudotachylyte-bearing fault systems in the evaluation and prediction of their slip dynamics.

Collaboration


Dive into the Jackie E. Kendrick's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takehiro Hirose

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge