Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jackie Pallister is active.

Publication


Featured researches published by Jackie Pallister.


Vaccine | 2011

A recombinant Hendra virus G glycoprotein-based subunit vaccine protects ferrets from lethal Hendra virus challenge

Jackie Pallister; Deborah Middleton; Lin-Fa Wang; Reuben Klein; Jessica Haining; Rachel Robinson; Manabu Yamada; John R. White; Jean Payne; Yan-Ru Feng; Yee-Peng Chan; Christopher C. Broder

The henipaviruses, Hendra virus (HeV) and Nipah virus (NiV), are two deadly zoonotic viruses for which no vaccines or therapeutics have yet been approved for human or livestock use. In 14 outbreaks since 1994 HeV has been responsible for multiple fatalities in horses and humans, with all known human infections resulting from close contact with infected horses. A vaccine that prevents virus shedding in infected horses could interrupt the chain of transmission to humans and therefore prevent HeV disease in both. Here we characterise HeV infection in a ferret model and show that it closely mirrors the disease seen in humans and horses with induction of systemic vasculitis, including involvement of the pulmonary and central nervous systems. This model of HeV infection in the ferret was used to assess the immunogenicity and protective efficacy of a subunit vaccine based on a recombinant soluble version of the HeV attachment glycoprotein G (HeVsG), adjuvanted with CpG. We report that ferrets vaccinated with a 100 μg, 20 μg or 4 μg dose of HeVsG remained free of clinical signs of HeV infection following a challenge with 5000 TCID₅₀ of HeV. In addition, and of considerable importance, no evidence of virus or viral genome was detected in any tissues or body fluids in any ferret in the 100 and 20 μg groups, while genome was detected in the nasal washes only of one animal in the 4 μg group. Together, our findings indicate that 100 μg or 20 μg doses of HeVsG vaccine can completely prevent a productive HeV infection in the ferret, suggesting that vaccination to prevent the infection and shedding of HeV is possible.


Emerging Infectious Diseases | 2014

Hendra Virus Vaccine, a One Health Approach to Protecting Horse, Human, and Environmental Health

Deborah Middleton; Jackie Pallister; Reuben Klein; Yan-Ru Feng; Jessica Haining; Rachel Arkinstall; Leah Frazer; Jinan Huang; Nigel Edwards; Mark Wareing; Martin Elhay; Zia Hashmi; John Bingham; Manabu Yamada; Dayna Johnson; John R. White; Adam J. Foord; Hans G. Heine; Glenn A. Marsh; Christopher C. Broder; Lin-Fa Wang

In recent years, the emergence of several highly pathogenic zoonotic diseases in humans has led to a renewed emphasis on the interconnectedness of human, animal, and environmental health, otherwise known as One Health. For example, Hendra virus (HeV), a zoonotic paramyxovirus, was discovered in 1994, and since then, infections have occurred in 7 humans, each of whom had a strong epidemiologic link to similarly affected horses. As a consequence of these outbreaks, eradication of bat populations was discussed, despite their crucial environmental roles in pollination and reduction of the insect population. We describe the development and evaluation of a vaccine for horses with the potential for breaking the chain of HeV transmission from bats to horses to humans, thereby protecting horse, human, and environmental health. The HeV vaccine for horses is a key example of a One Health approach to the control of human disease.


Journal of Virology | 2009

Chloroquine Administration Does Not Prevent Nipah Virus Infection and Disease in Ferrets

Jackie Pallister; Deborah Middleton; Gary Crameri; Manabu Yamada; Reuben Klein; Timothy J. Hancock; Adam J. Foord; Brian J. Shiell; Wojtek P. Michalski; Christopher C. Broder; Lin-Fa Wang

ABSTRACT Hendra virus and Nipah virus, two zoonotic paramyxoviruses in the genus Henipavirus, have recently emerged and continue to cause sporadic disease outbreaks in humans and animals. Mortality rates of up to 75% have been reported in humans, but there are presently no clinically licensed therapeutics for treating henipavirus-induced disease. A recent report indicated that chloroquine, used in malaria therapy for over 70 years, prevented infection with Nipah virus in vitro. Chloroquine was assessed using a ferret model of lethal Nipah virus infection and found to be ineffective against Nipah virus infection in vivo.


Antiviral Research | 2013

A treatment for and vaccine against the deadly Hendra and Nipah viruses

Christopher C. Broder; Kai Xu; Dimitar B. Nikolov; Zhongyu Zhu; Dimiter S. Dimitrov; Deborah Middleton; Jackie Pallister; Thomas W. Geisbert; Katharine N. Bossart; Lin-Fa Wang

Hendra virus and Nipah virus are bat-borne paramyxoviruses that are the prototypic members of the genus Henipavirus. The henipaviruses emerged in the 1990s, spilling over from their natural bat hosts and causing serious disease outbreaks in humans and livestock. Hendra virus emerged in Australia and since 1994 there have been 7 human infections with 4 case fatalities. Nipah virus first appeared in Malaysia and subsequent outbreaks have occurred in Bangladesh and India. In total, there have been an estimated 582 human cases of Nipah virus and of these, 54% were fatal. Their broad species tropism and ability to cause fatal respiratory and/or neurologic disease in humans and animals make them important transboundary biological threats. Recent experimental findings in animals have demonstrated that a human monoclonal antibody targeting the viral G glycoprotein is an effective post-exposure treatment against Hendra and Nipah virus infection. In addition, a subunit vaccine based on the G glycoprotein of Hendra virus affords protection against Hendra and Nipah virus challenge. The vaccine has been developed for use in horses in Australia and is the first vaccine against a Biosafety Level-4 (BSL-4) agent to be licensed and commercially deployed. Together, these advances offer viable approaches to address Hendra and Nipah virus infection of livestock and people.


Journal of Virology | 2013

Promotion of Hendra Virus Replication by MicroRNA 146a

Cameron R. Stewart; Glenn A. Marsh; Kristie Jenkins; Michael P. Gantier; Mark Tizard; Deborah Middleton; John W. Lowenthal; Jessica Haining; Leonard Izzard; Tamara J. Gough; Celine Deffrasnes; John Stambas; Rachel Robinson; Hans G. Heine; Jackie Pallister; Adam J. Foord; Andrew G. D. Bean; Lin-Fa Wang

ABSTRACT Hendra virus is a highly pathogenic zoonotic paramyxovirus in the genus Henipavirus. Thirty-nine outbreaks of Hendra virus have been reported since its initial identification in Queensland, Australia, resulting in seven human infections and four fatalities. Little is known about cellular host factors impacting Hendra virus replication. In this work, we demonstrate that Hendra virus makes use of a microRNA (miRNA) designated miR-146a, an NF-κB-responsive miRNA upregulated by several innate immune ligands, to favor its replication. miR-146a is elevated in the blood of ferrets and horses infected with Hendra virus and is upregulated by Hendra virus in human cells in vitro. Blocking miR-146a reduces Hendra virus replication in vitro, suggesting a role for this miRNA in Hendra virus replication. In silico analysis of miR-146a targets identified ring finger protein (RNF)11, a member of the A20 ubiquitin editing complex that negatively regulates NF-κB activity, as a novel component of Hendra virus replication. RNA interference-mediated silencing of RNF11 promotes Hendra virus replication in vitro, suggesting that increased NF-κB activity aids Hendra virus replication. Furthermore, overexpression of the IκB superrepressor inhibits Hendra virus replication. These studies are the first to demonstrate a host miRNA response to Hendra virus infection and suggest an important role for host miRNAs in Hendra virus disease.


Journal of Bioterrorism and Biodefense | 2011

Henipavirus Vaccine Development

Jackie Pallister; Deborah Middleton; Christopher C. Broder; Lin-Fa Wang

The henipaviruses, Hendra virus and Nipah virus, belong to the family Paramyxoviridae which has long been a source of highly contagious pathogens for both humans and animals. Some notable paramyxoviruses such as measles virus have spilled over from animals into humans to cause significant morbidity and mortality. Since 1994 the henipaviruses have periodically emerged from their animal reservoir in flying foxes to cause disease in human and animal populations. The recent emergence of these viruses coupled with the high mortality rate associated with henipavirus infections and the lack of any licensed prophylactic or therapeutic treatments, makes them agents of particular concern in the area of both human and agricultural biodefense. Advances in our understanding of henipavirus infection and pathogenesis has led to the development of several promising vaccine candidates making it likely that vaccines for henipavirus infections may be available in the near future.


Virology Journal | 2013

Vaccination of ferrets with a recombinant G glycoprotein subunit vaccine provides protection against Nipah virus disease for over 12 months.

Jackie Pallister; Reuben Klein; Rachel Arkinstall; Jessica Haining; Fenella Long; John R. White; Jean Payne; Yan-Ru Feng; Lin-Fa Wang; Christopher C. Broder; Deborah Middleton

BackgroundNipah virus (NiV) is a zoonotic virus belonging to the henipavirus genus in the family Paramyxoviridae. Since NiV was first identified in 1999, outbreaks have continued to occur in humans in Bangladesh and India on an almost annual basis with case fatality rates reported between 40% and 100%.MethodsFerrets were vaccinated with 4, 20 or 100 μg HeVsG formulated with the human use approved adjuvant, CpG, in a prime-boost regime. One half of the ferrets were exposed to NiV at 20 days post boost vaccination and the other at 434 days post vaccination. The presence of virus or viral genome was assessed in ferret fluids and tissues using real-time PCR, virus isolation, histopathology, and immunohistochemistry; serology was also carried out. Non-immunised ferrets were also exposed to virus to confirm the pathogenicity of the inoculum.ResultsFerrets exposed to Nipah virus 20 days post vaccination remained clinically healthy. Virus or viral genome was not detected in any tissues or fluids of the vaccinated ferrets; lesions and antigen were not identified on immunohistological examination of tissues; and there was no increase in antibody titre during the observation period, consistent with failure of virus replication. Of the ferrets challenged 434 days post vaccination, all five remained well throughout the study period; viral genome – but not virus - was recovered from nasal secretions of one ferret given 20 μg HeVsG and bronchial lymph nodes of the other. There was no increase in antibody titre during the observation period, consistent with lack of stimulation of a humoral memory response.ConclusionsWe have previously shown that ferrets vaccinated with 4, 20 or 100 μg HeVsG formulated with CpG adjuvant, which is currently in several human clinical trials, were protected from HeV disease. Here we show, under similar conditions of use, that the vaccine also provides protection against NiV-induced disease. Such protection persists for at least 12 months post-vaccination, with data supporting only localised and self-limiting virus replication in 2 of 5 animals. These results augur well for acceptability of the vaccine to industry.


Current Topics in Microbiology and Immunology | 2012

Immunization Strategies Against Henipaviruses

Christopher C. Broder; Thomas W. Geisbert; Kai Xu; Dimitar B. Nikolov; Lin-Fa Wang; Deborah Middleton; Jackie Pallister; Katharine N. Bossart

Hendra virus and Nipah virus are recently discovered and closely related emerging viruses that now comprise the genus henipavirus within the sub-family Paramyxoviridae and are distinguished by their broad species tropism and in addition to bats can infect and cause fatal disease in a wide variety of mammalian hosts including humans. The high mortality associated with human and animal henipavirus infections has highlighted the importance and necessity of developing effective immunization strategies. The development of suitable animal models of henipavirus infection and pathogenesis has been critical for testing the efficacy of potential therapeutic approaches. Several henipavirus challenge models have been used and recent successes in both active and passive immunization strategies against henipaviruses have been reported which have all targeted the viral envelope glycoproteins.


Archives of Virology | 2005

Promoter activity in the 5′ flanking regions of the Bohle iridovirus ICP 18, ICP 46 and major capsid protein genes

Jackie Pallister; S. Goldie; Barbara E.H. Coupar; Alex D. Hyatt

Summary.Bohle iridovirus (BIV) belongs to the genus Ranavirus, of which Frog virus 3 (FV-3) is the type species. We are developing BIV as a recombinant viral delivery vector, and as a first step we located specific BIV promoter sequences to drive foreign gene expression in the recombinant virus. By comparison with FV-3 sequences, the genes encoding ICP 18 and ICP 46 in BIV were identified and sequenced. Putative promoter regions of these two early genes and of the major capsid protein (MCP) gene were identified, cloned into pSFM21, and luciferase production was then used to assess the promoter activity of these regions.


Archives of Virology | 2005

Identification of a Bohle iridovirus thymidine kinase gene and demonstration of activity using vaccinia virus

Barbara E.H. Coupar; S. Goldie; Alex D. Hyatt; Jackie Pallister

Summary.In recent years interest in the family Iridoviridae has been renewed by the identification of a number of viruses, particularly from the genus Ranavirus, associated with disease in a range of poikilotherms. Ranaviruses have been isolated from amphibian, piscine and reptilian species. Here we describe an open reading frame (ORF) identified in the genome of Bohle iridovirus (BIV) which contains a nucleotide binding motif conserved within the thymidine kinase (TK) genes of iridoviruses from other genera (lymphocystis disease virus, LCDV, type species of the genus Lymphocystivirus; Chilo iridescent virus, CIV, type species of the genus Iridovirus). The ability of this putative gene to express a functional TK was confirmed by rescue of a TK negative mutant vaccinia virus in the presence of selective media, when expression was controlled by a vaccinia virus promoter. The sequence of the BIV TK was compared with the homologous sequences from epizootic haematopoietic necrosis virus (EHNV), a virus associated with disease in fish, from Wamena iridovirus (WIV) associated with systemic disease in green pythons, and from frog virus 3 (FV3) the ranavirus type species. Comparisons between these sequences and those available from other ranaviruses, other iridoviruses, other DNA viruses and cellular TKs are presented.

Collaboration


Dive into the Jackie Pallister's collaboration.

Top Co-Authors

Avatar

Deborah Middleton

Australian Animal Health Laboratory

View shared research outputs
Top Co-Authors

Avatar

Lin-Fa Wang

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Christopher C. Broder

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Reuben Klein

Australian Animal Health Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jessica Haining

Australian Animal Health Laboratory

View shared research outputs
Top Co-Authors

Avatar

Alex D. Hyatt

Australian Animal Health Laboratory

View shared research outputs
Top Co-Authors

Avatar

John R. White

Australian Animal Health Laboratory

View shared research outputs
Top Co-Authors

Avatar

Adam J. Foord

Australian Animal Health Laboratory

View shared research outputs
Top Co-Authors

Avatar

Barbara E.H. Coupar

Australian Animal Health Laboratory

View shared research outputs
Top Co-Authors

Avatar

Brian J. Shiell

Australian Animal Health Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge