Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jaclyn Carberry is active.

Publication


Featured researches published by Jaclyn Carberry.


Journal of the American Heart Association | 2016

Temporal Evolution of Myocardial Hemorrhage and Edema in Patients After Acute ST‐Segment Elevation Myocardial Infarction: Pathophysiological Insights and Clinical Implications

David Carrick; Caroline Haig; Nadeem Ahmed; Samuli Rauhalammi; Guillaume Clerfond; Jaclyn Carberry; Ify Mordi; Margaret McEntegart; Mark C. Petrie; Hany Eteiba; Stuart Hood; Stuart Watkins; Mitchell Lindsay; Ahmed Mahrous; Paul Welsh; Naveed Sattar; Ian Ford; Keith G. Oldroyd; Aleksandra Radjenovic; Colin Berry

Background The time course and relationships of myocardial hemorrhage and edema in patients after acute ST‐segment elevation myocardial infarction (STEMI) are uncertain. Methods and Results Patients with ST‐segment elevation myocardial infarction treated by primary percutaneous coronary intervention underwent cardiac magnetic resonance imaging on 4 occasions: at 4 to 12 hours, 3 days, 10 days, and 7 months after reperfusion. Myocardial edema (native T2) and hemorrhage (T2*) were measured in regions of interest in remote and injured myocardium. Myocardial hemorrhage was taken to represent a hypointense infarct core with a T2* value <20 ms. Thirty patients with ST‐segment elevation myocardial infarction (mean age 54 years; 25 [83%] male) gave informed consent. Myocardial hemorrhage occurred in 7 (23%), 13 (43%), 11 (33%), and 4 (13%) patients at 4 to 12 hours, 3 days, 10 days, and 7 months, respectively, consistent with a unimodal pattern. The corresponding median amounts of myocardial hemorrhage (percentage of left ventricular mass) during the first 10 days after myocardial infarction were 2.7% (interquartile range [IQR] 0.0–5.6%), 7.0% (IQR 4.9–7.5%), and 4.1% (IQR 2.6–5.5%; P<0.001). Similar unimodal temporal patterns were observed for myocardial edema (percentage of left ventricular mass) in all patients (P=0.001) and for infarct zone edema (T2, in ms: 62.1 [SD 2.9], 64.4 [SD 4.9], 65.9 [SD 5.3]; P<0.001) in patients without myocardial hemorrhage. Alternatively, in patients with myocardial hemorrhage, infarct zone edema was reduced at day 3 (T2, in ms: 51.8 [SD 4.6]; P<0.001), depicting a bimodal pattern. Left ventricular end‐diastolic volume increased from baseline to 7 months in patients with myocardial hemorrhage (P=0.001) but not in patients without hemorrhage (P=0.377). Conclusions The temporal evolutions of myocardial hemorrhage and edema are unimodal, whereas infarct zone edema (T2 value) has a bimodal pattern. Myocardial hemorrhage is prognostically important and represents a target for therapeutic interventions that are designed to preserve vascular integrity following coronary reperfusion. Clinical Trial Registration URL: https://clinicaltrials.gov/. Unique identifier: NCT02072850.


Circulation | 2016

Comparative prognostic utility of indexes of microvascular function alone or in combination in patients with an acute ST-segment elevation myocardial infarction

David Carrick; Caroline Haig; Nadeem Ahmed; Jaclyn Carberry; Vannesa Teng Yue May; Margaret McEntegart; Mark C. Petrie; Hany Eteiba; Mitchell Lindsay; Stuart Hood; Stuart Watkins; Andrew Davie; Ahmed Mahrous; Ify Mordi; Ian Ford; Aleksandra Radjenovic; Keith G. Oldroyd; Colin Berry

Background: Primary percutaneous coronary intervention is frequently successful at restoring coronary artery blood flow in patients with acute ST-segment–elevation myocardial infarction; however, failed myocardial reperfusion commonly passes undetected in up to half of these patients. The index of microvascular resistance (IMR) is a novel invasive measure of coronary microvascular function. We aimed to investigate the pathological and prognostic significance of an IMR>40, alone or in combination with a coronary flow reserve (CFR⩽2.0), in the culprit artery after emergency percutaneous coronary intervention for acute ST-segment–elevation myocardial infarction. Methods: Patients with acute ST-segment–elevation myocardial infarction were prospectively enrolled during emergency percutaneous coronary intervention and categorized according to IMR (⩽40 or >40) and CFR (⩽2.0 or >2.0). Cardiac magnetic resonance imaging was acquired 2 days and 6 months after myocardial infarction. All-cause death or first heart failure hospitalization was a prespecified outcome (median follow-up, 845 days). Results: IMR and CFR were measured in the culprit artery at the end of percutaneous coronary intervention in 283 patients with ST-segment–elevation myocardial infarction (mean±SD age, 60±12 years; 73% male). The median IMR and CFR were 25 (interquartile range, 15–48) and 1.6 (interquartile range, 1.1–2.1), respectively. An IMR>40 was a multivariable associate of myocardial hemorrhage (odds ratio, 2.10; 95% confidence interval, 1.03–4.27; P=0.042). An IMR>40 was closely associated with microvascular obstruction. Symptom-to-reperfusion time, TIMI (Thrombolysis in Myocardial Infarction) blush grade, and no (⩽30%) ST-segment resolution were not associated with these pathologies. An IMR>40 was a multivariable associate of the changes in left ventricular ejection fraction (coefficient, −2.12; 95% confidence interval, −4.02 to −0.23; P=0.028) and left ventricular end-diastolic volume (coefficient, 7.85; 95% confidence interval, 0.41–15.29; P=0.039) at 6 months independently of infarct size. An IMR>40 (odds ratio, 4.36; 95% confidence interval, 2.10–9.06; P<0.001) was a multivariable associate of all-cause death or heart failure. Compared with an IMR>40, the combination of IMR>40 and CFR⩽2.0 did not have incremental prognostic value. Conclusions: An IMR>40 is a multivariable associate of left ventricular and clinical outcomes after ST-segment–elevation myocardial infarction independently of the infarction size. Compared with standard clinical measures of the efficacy of myocardial reperfusion, including the ischemic time, ST-segment elevation, angiographic blush grade, and CFR, IMR has superior clinical value for risk stratification and may be considered a reference test for failed myocardial reperfusion. Clinical Trial Registration: URL: https//www.clinicaltrials.gov. Unique identifier: NCT02072850.


Hypertension | 2016

Remote Zone Extracellular Volume and Left Ventricular Remodeling in Survivors of ST-Elevation Myocardial Infarction

Jaclyn Carberry; David Carrick; Caroline Haig; Samuli Rauhalammi; Nadeem Ahmed; Ify Mordi; Margaret McEntegart; Mark C. Petrie; Hany Eteiba; Stuart Hood; Stuart Watkins; Mitchell Lindsay; Andrew Davie; Ahmed Mahrous; Ian Ford; Naveed Sattar; Paul Welsh; Aleksandra Radjenovic; Keith G. Oldroyd; Colin Berry

The natural history and pathophysiological significance of tissue remodeling in the myocardial remote zone after acute ST-elevation myocardial infarction (STEMI) is incompletely understood. Extracellular volume (ECV) in myocardial regions of interest can now be measured with cardiac magnetic resonance imaging. Patients who sustained an acute STEMI were enrolled in a cohort study (BHF MR-MI [British Heart Foundation Magnetic Resonance Imaging in Acute ST-Segment Elevation Myocardial Infarction study]). Cardiac magnetic resonance was performed at 1.5 Tesla at 2 days and 6 months post STEMI. T1 modified Look-Locker inversion recovery mapping was performed before and 15 minutes after contrast (0.15 mmol/kg gadoterate meglumine) in 140 patients at 2 days post STEMI (mean age: 59 years, 76% male) and in 131 patients at 6 months post STEMI. Remote zone ECV was lower than infarct zone ECV (25.6±2.8% versus 51.4±8.9%; P<0.001). In multivariable regression, left ventricular ejection fraction was inversely associated with remote zone ECV (P<0.001), and diabetes mellitus was positively associated with remote zone ECV (P=0.010). No ST-segment resolution (P=0.034) and extent of ischemic area at risk (P<0.001) were multivariable associates of the change in remote zone ECV at 6 months (&Dgr;ECV). &Dgr;ECV was a multivariable associate of the change in left ventricular end-diastolic volume at 6 months (regression coefficient [95% confidence interval]: 1.43 (0.10–2.76); P=0.036). &Dgr;ECV is implicated in the pathophysiology of left ventricular remodeling post STEMI, but because the effect size is small, &Dgr;ECV has limited use as a clinical biomarker of remodeling. Clinical Trial Registration—URL: https://www.clinicaltrials.gov. Unique identifier: NCT02072850.


JCI insight | 2016

Microvascular resistance of the culprit coronary artery in acute ST-elevation myocardial infarction

David Carrick; Caroline Haig; Jaclyn Carberry; Vannesa Teng Yue May; Peter McCartney; Paul Welsh; Nadeem Ahmed; Margaret McEntegart; Mark C. Petrie; Hany Eteiba; Mitchell Lindsay; Stuart Hood; Stuart Watkins; Ahmed Mahrous; Samuli Rauhalammi; Ify Mordi; Ian Ford; Aleksandra Radjenovic; Naveed Sattar; Keith G. Oldroyd; Colin Berry

BACKGROUND. Failed myocardial reperfusion is common and prognostically important after acute ST-elevation myocardial infarction (STEMI). The purpose of this study was to investigate coronary flow reserve (CFR), a measure of vasodilator capacity, and the index of microvascular resistance (IMR; mmHg × s) in the culprit artery of STEMI survivors. METHODS. IMR (n = 288) and CFR (n = 283; mean age [SD], 60 [12] years) were measured acutely using guide wire–based thermodilution. Cardiac MRI disclosed left ventricular pathology, function, and volumes at 2 days (n = 281) and 6 months after STEMI (n = 264). All-cause death or first heart failure hospitalization was independently adjudicated (median follow-up 845 days). RESULTS. Myocardial hemorrhage and microvascular obstruction occurred in 89 (42%) and 114 (54%) patients with evaluable T2*-MRI maps. IMR and CFR were associated with microvascular pathology (none vs. microvascular obstruction only vs. microvascular obstruction and myocardial hemorrhage) (median [interquartile range], IMR: 17 [12.0–33.0] vs. 17 [13.0–39.0] vs. 37 [21.0–63.0], P < 0.001; CFR: 1.7 [1.4–2.5] vs. 1.5 [1.1–1.8] vs. 1.4 [1.0–1.8], P < 0.001), whereas thrombolysis in myocardial infarction blush grade was not. IMR was a multivariable associate of changes in left ventricular end-diastolic volume (regression coefficient [95% CI] 0.13 [0.01, 0.24]; P = 0.036), whereas CFR was not (P = 0.160). IMR (5 units) was a multivariable associate of all-cause death or heart failure hospitalization (n = 30 events; hazard ratio [95% CI], 1.09 [1.04, 1.14]; P < 0.001), whereas CFR (P = 0.124) and thrombolysis in myocardial infarction blush grade (P = 0.613) were not. IMR had similar prognostic value for these outcomes as <50% ST-segment resolution on the ECG. CONCLUSIONS. IMR is more closely associated with microvascular pathology, left ventricular remodeling, and health outcomes than the angiogram or CFR. TRIAL REGISTRATION. NCT02072850. FUNDING. A British Heart Foundation Project Grant (PG/11/2/28474), the National Health Service, the Chief Scientist Office, a Scottish Funding Council Senior Fellowship, a British Heart Foundation Intermediate Fellowship (FS/12/62/29889), and a nonfinancial research agreement with Siemens Healthcare.


International Journal of Cardiology | 2016

Safety of guidewire-based measurement of fractional flow reserve and the index of microvascular resistance using intravenous adenosine in patients with acute or recent myocardial infarction.

Nadeem Ahmed; Jamie Layland; David Carrick; Mark C. Petrie; Margaret McEntegart; Hany Eteiba; Stuart Hood; Mitchell Lindsay; Stuart Watkins; Andrew Davie; Ahmed Mahrous; Jaclyn Carberry; Alex McConnachie; Nick Curzen; Keith G. Oldroyd; Colin Berry

Aims Coronary guidewire-based diagnostic assessments with hyperemia may cause iatrogenic complications. We assessed the safety of guidewire-based measurement of coronary physiology, using intravenous adenosine, in patients with an acute coronary syndrome. Methods We prospectively enrolled invasively managed STEMI and NSTEMI patients in two simultaneously conducted studies in 6 centers (NCT01764334; NCT02072850). All of the participants underwent a diagnostic coronary guidewire study using intravenous adenosine (140 μg/kg/min) infusion for 1–2 min. The patients were prospectively assessed for the occurrence of serious adverse events (SAEs) and symptoms and invasively measured hemodynamics were also recorded. Results 648 patients (n = 298 STEMI patients in 1 hospital; mean time to reperfusion 253 min; n = 350 NSTEMI in 6 hospitals; median time to angiography from index chest pain episode 3 (2, 5) days) were included between March 2011 and May 2013. Two NSTEMI patients (0.3% overall) experienced a coronary dissection related to the guidewire. No guidewire dissections occurred in the STEMI patients. Chest symptoms were reported in the majority (86%) of patients symptoms during the adenosine infusion. No serious adverse events occurred during infusion of adenosine and all of the symptoms resolved after the infusion ceased. Conclusions In this multicenter analysis, guidewire-based measurement of FFR and IMR using intravenous adenosine was safe in patients following STEMI or NSTEMI. Self-limiting symptoms were common but not associated with serious adverse events. Finally, coronary dissection in STEMI and NSTEMI patients was noted to be a rare phenomenon.


PeerJ | 2015

Perivascular mast cells regulate vein graft neointimal formation and remodeling

Junxi Wu; Gianluca Grassia; Helen Cambrook; Armando Ialenti; Neil MacRitchie; Jaclyn Carberry; Roger M. Wadsworth; Catherine E. Lawrence; Simon Kennedy; Pasquale Maffia

Objective. Emerging evidence suggests an important role for mast cells in vein graft failure. This study addressed the hypothesis that perivascular mast cells regulate in situ vascular inflammatory and proliferative responses and subsequent vein graft neointimal lesion formation, using an optimized local mast cell reconstitution method. Methods and Results. Neointimal hyperplasia was induced by insertion of a vein graft into the right carotid artery in wild type and mast cell deficient KitW−sh/W−sh mice. In some experiments, mast cells were reconstituted systemically (tail vein injection of bone marrow-derived mast cells) or locally (directly into the right neck area) prior to vein grafting. Vein graft neointimal lesion formation was significantly (P < 0.05) reduced in KitW−sh/W−sh mice. Mast cell deficiency reduced the number of proliferating cells, and inhibited L-selectin, CCL2, M-CSF and MIP-3α expression in the vein grafts. Local but not systemic mast cell reconstitution restored a perivascular mast cell population that subsequently promoted neointimal formation in mast cell deficient mice. Conclusion. Our data demonstrate that perivascular mast cells play a key role in promoting neointima formation by inducing local acute inflammatory and proliferative responses. These results suggest that ex vivo intraoperative targeting of mast cells may have therapeutic potential for the prevention of pathological vein graft remodeling.


Circulation-cardiovascular Imaging | 2017

Persistence of Infarct Zone T2 Hyperintensity at 6 Months After Acute ST-Segment–Elevation Myocardial InfarctionCLINICAL PERSPECTIVE: Incidence, Pathophysiology, and Prognostic Implications

Jaclyn Carberry; David Carrick; Caroline Haig; Nadeem Ahmed; Ify Mordi; Margaret McEntegart; Mark C. Petrie; Hany Eteiba; Stuart Hood; Stuart Watkins; Mitchell Lindsay; Andrew Davie; Ahmed Mahrous; Ian Ford; Naveed Sattar; Paul Welsh; Aleksandra Radjenovic; Keith G. Oldroyd; Colin Berry

Background— The incidence and clinical significance of persistent T2 hyperintensity after acute ST-segment–elevation myocardial infarction (STEMI) is uncertain. Methods and Results— Patients who sustained an acute STEMI were enrolled in a cohort study (BHF MR-MI: NCT02072850). Two hundred eighty-three STEMI patients (mean age, 59±12 years; 75% male) had cardiac magnetic resonance with T2 mapping performed at 2 days and 6 months post-STEMI. Persisting T2 hyperintensity was defined as infarct T2 >2 SDs from remote T2 at 6 months. Infarct zone T2 was higher than remote zone T2 at 2 days (66.3±6.1 versus 49.7±2.1 ms; P<0.001) and 6 months (56.8±4.5 versus 49.7±2.3 ms; P<0.001). Remote zone T2 did not change over time (mean change, 0.0±2.7 ms; P=0.837), whereas infarct zone T2 decreased (−9.5±6.4 ms; P<0.001). At 6 months, T2 hyperintensity persisted in 189 (67%) patients, who were more likely to have Thrombus in Myocardial Infarction flow 0 or 1 in the culprit artery (P=0.020), incomplete ST-segment resolution (P=0.037), and higher troponin (P=0.024). Persistent T2 hyperintensity was associated with NT-proBNP (N-terminal pro-B-type natriuretic peptide) concentration (0.57 on a log scale [0.42–0.72]; P=0.004) and the likelihood of adverse left ventricular remodeling (>20% change in left ventricular end-diastolic volume; 21.91 [2.75–174.29]; P=0.004). Persistent T2 hyperintensity was associated with all-cause death and heart failure, but the result was not significant (P=0.051). &Dgr;T2 was associated with all-cause death and heart failure (P=0.004) and major adverse cardiac events (P=0.013). Conclusions— Persistent T2 hyperintensity occurs in two thirds of STEMI patients. Persistent T2 hyperintensity was associated with the initial STEMI severity, adverse remodeling, and long-term health outcome. Clinical Trial Registration— URL: http://www.clinicaltrials.gov. Unique identifier: NCT02072850.


Journal of the American Heart Association | 2017

Diagnostic accuracy of 3.0-T magnetic resonance T1 and T2 mapping and T2-weighted dark-blood imaging for the infarct-related coronary artery in Non-ST-segment elevation myocardial infarction

Jamie Layland; Samuli Rauhalammi; Matthew M.Y. Lee; Nadeem Ahmed; Jaclyn Carberry; Vannesa Teng Yue May; Stuart Watkins; Christie McComb; Kenneth Mangion; John McClure; David Carrick; Anna O'Donnell; Arvind Sood; Margaret McEntegart; Keith G. Oldroyd; Aleksandra Radjenovic; Colin Berry

Background Patients with recent non–ST‐segment elevation myocardial infarction commonly have heterogeneous characteristics that may be challenging to assess clinically. Methods and Results We prospectively studied the diagnostic accuracy of 2 novel (T1, T2 mapping) and 1 established (T2‐weighted short tau inversion recovery [T2W‐STIR]) magnetic resonance imaging methods for imaging the ischemic area at risk and myocardial salvage in 73 patients with non–ST‐segment elevation myocardial infarction (mean age 57±10 years, 78% male) at 3.0‐T magnetic resonance imaging within 6.5±3.5 days of invasive management. The infarct‐related territory was identified independently using a combination of angiographic, ECG, and clinical findings. The presence and extent of infarction was assessed with late gadolinium enhancement imaging (gadobutrol, 0.1 mmol/kg). The extent of acutely injured myocardium was independently assessed with native T1, T2, and T2W‐STIR methods. The mean infarct size was 5.9±8.0% of left ventricular mass. The infarct zone T1 and T2 times were 1323±68 and 57±5 ms, respectively. The diagnostic accuracies of T1 and T2 mapping for identification of the infarct‐related artery were similar (P=0.125), and both were superior to T2W‐STIR (P<0.001). The extent of myocardial injury (percentage of left ventricular volume) estimated with T1 (15.8±10.6%) and T2 maps (16.0±11.8%) was similar (P=0.838) and moderately well correlated (r=0.82, P<0.001). Mean extent of acute injury estimated with T2W‐STIR (7.8±11.6%) was lower than that estimated with T1 (P<0.001) or T2 maps (P<0.001). Conclusions In patients with non–ST‐segment elevation myocardial infarction, T1 and T2 magnetic resonance imaging mapping have higher diagnostic performance than T2W‐STIR for identifying the infarct‐related artery. Compared with conventional STIR, T1 and T2 maps have superior value to inform diagnosis and revascularization planning in non–ST‐segment elevation myocardial infarction. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT02073422.


Jacc-cardiovascular Imaging | 2017

Persistent Iron Within the Infarct Core After ST-Segment Elevation Myocardial Infarction: Implications for Left Ventricular Remodeling and Health Outcomes

Jaclyn Carberry; David Carrick; Caroline Haig; Nadeem Ahmed; Ify Mordi; Margaret McEntegart; Mark C. Petrie; Hany Eteiba; Stuart Hood; Stuart Watkins; Mitchell Lindsay; Andrew Davie; Ahmed Mahrous; Ian Ford; Naveed Sattar; Paul Welsh; Aleksandra Radjenovic; Keith G. Oldroyd; Colin Berry

Objectives This study sought to determine the incidence and prognostic significance of persistent iron in patients post–ST-segment elevation myocardial infarction (STEMI). Background The clinical significance of persistent iron within the infarct core after STEMI complicated by acute myocardial hemorrhage is poorly understood. Methods Patients who sustained an acute STEMI were enrolled in a cohort study (BHF MR-MI [Detection and Significance of Heart Injury in ST Elevation Myocardial Infarction]). Cardiac magnetic resonance imaging including T2* (observed time constant for the decay of transverse magnetization seen with gradient-echo sequences) mapping was performed at 2 days and 6 months post-STEMI. Myocardial hemorrhage or iron was defined as a hypointense infarct core with T2* signal <20 ms. Results A total of 203 patients (age 57 ± 11 years, n = 158 [78%] male) had evaluable T2* maps at 2 days and 6 months post-STEMI; 74 (36%) patients had myocardial hemorrhage at baseline, and 44 (59%) of these patients had persistent iron at 6 months. Clinical associates of persistent iron included heart rate (p = 0.009), the absence of a history of hypertension (p = 0.017), and infarct size (p = 0.028). The presence of persistent iron was associated with worsening left ventricular (LV) end-diastolic volume (regression coefficient: 21.10; 95% confidence interval [CI]: 10.92 to 31.27; p < 0.001) and worsening LV ejection fraction (regression coefficient: −6.47; 95% CI: −9.22 to −3.72; p < 0.001). Persistent iron was associated with the subsequent occurrence of all-cause death or heart failure (hazard ratio: 3.91; 95% CI: 1.37 to 11.14; p = 0.011) and major adverse cardiac events (hazard ratio: 3.24; 95% CI: 1.09 to 9.64; p = 0.035) (median follow-up duration 1,457 days [range 233 to 1,734 days]). Conclusions Persistent iron at 6 months post-STEMI is associated with worse LV and longer-term health outcomes. (Detection and Significance of Heart Injury in ST Elevation Myocardial Infarction [BHF MR-MI]; NCT02072850)


Jacc-cardiovascular Imaging | 2018

Current Smoking and Prognosis After Acute ST-Segment Elevation Myocardial Infarction: New Pathophysiological Insights

Caroline Haig; David Carrick; Jaclyn Carberry; Kenneth Mangion; Annette Maznyczka; Kirsty Wetherall; Margaret McEntegart; Mark C. Petrie; Hany Eteiba; Mitchell Lindsay; Stuart Hood; Stuart Watkins; Andrew Davie; Ahmed Mahrous; Ify Mordi; Nadeem Ahmed; Vannesa Teng Yue May; Ian Ford; Aleksandra Radjenovic; Paul Welsh; Naveed Sattar; Keith G. Oldroyd; Colin Berry

Objectives The aim of this study was to mechanistically investigate associations among cigarette smoking, microvascular pathology, and longer term health outcomes in patients with acute ST-segment elevation myocardial infarction (MI). Background The pathophysiology of myocardial reperfusion injury and prognosis in smokers with acute ST-segment elevation MI is incompletely understood. Methods Patients were prospectively enrolled during emergency percutaneous coronary intervention. Microvascular function in the culprit artery was measured invasively. Contrast-enhanced magnetic resonance imaging (1.5-T) was performed 2 days and 6 months post-MI. Infarct size and microvascular obstruction were assessed using late gadolinium enhancement imaging. Myocardial hemorrhage was assessed with T2* mapping. Pre-specified endpoints included: 1) all-cause death or first heart failure hospitalization; and 2) cardiac death, nonfatal MI, or urgent coronary revascularization (major adverse cardiovascular events). Binary logistic regression (odds ratio [OR] with 95% confidence interval [CI]) with smoking status was used. Results In total, 324 patients with ST-segment elevation MI were enrolled (mean age 59 years, 73% men, 60% current smokers). Current smokers were younger (age 55 ± 11 years vs. 65 ± 10 years, p < 0.001), with fewer patients with hypertension (52 ± 27% vs. 53 ± 41%, p = 0.007). Smokers had better TIMI (Thrombolysis In Myocardial Infarction) flow grade (≥2 vs. ≤1, p = 0.024) and ST-segment resolution (none vs. partial vs. complete, p = 0.010) post–percutaneous coronary intervention. On day 1, smokers had higher circulating C-reactive protein, neutrophil, and monocyte levels. Two days post-MI, smoking independently predicted infarct zone hemorrhage (OR: 2.76; 95% CI: 1.42 to 5.37; p = 0.003). After a median follow-up period of 4 years, smoking independently predicted all-cause death or heart failure events (OR: 2.20; 95% CI: 1.07 to 4.54) and major adverse cardiovascular events (OR: 2.79; 95% CI: 2.30 to 5.99). Conclusions Smoking is associated with enhanced inflammation acutely, infarct-zone hemorrhage subsequently, and longer term adverse cardiac outcomes. Inflammation and irreversible myocardial hemorrhage post-MI represent mechanistic drivers for adverse long-term prognosis in smokers. (Detection and Significance of Heart Injury in ST Elevation Myocardial Infarction. [BHF MR-MI]; NCT02072850)

Collaboration


Dive into the Jaclyn Carberry's collaboration.

Top Co-Authors

Avatar

Colin Berry

Golden Jubilee National Hospital

View shared research outputs
Top Co-Authors

Avatar

David Carrick

Golden Jubilee National Hospital

View shared research outputs
Top Co-Authors

Avatar

Margaret McEntegart

Golden Jubilee National Hospital

View shared research outputs
Top Co-Authors

Avatar

Keith G. Oldroyd

Golden Jubilee National Hospital

View shared research outputs
Top Co-Authors

Avatar

Stuart Watkins

Golden Jubilee National Hospital

View shared research outputs
Top Co-Authors

Avatar

Hany Eteiba

Golden Jubilee National Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mitchell Lindsay

Golden Jubilee National Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge